The MediaPipe Image Generator task lets you generate images based on a text prompt. This task uses a text-to-image model to generate images using diffusion techniques.
The task accepts a text prompt as input, along with an optional condition image that the model can augment and use as a reference for generation. Image Generator can also generate images based on specific concepts provided to the model during training or retraining. For more information, see customize with LoRA.
The code sample described in these instructions is available on GitHub. For more information about the capabilities, models, and configuration options of this task, see the Overview.
Code example
The MediaPipe Tasks example code is a basic implementation of a Image Generator app for Android. You can use the app as a starting point for your own Android app, or refer to it when modifying an existing app. The Image Generator example code is hosted on GitHub.
Download the code
The following instructions show you how to create a local copy of the example code using the git command line tool.
To download the example code:
- Clone the git repository using the following command:
git clone https://github.com/google-ai-edge/mediapipe-samples
- Optionally, configure your git instance to use sparse checkout, so you have
only the files for the Image Generator example app:
cd mediapipe git sparse-checkout init --cone git sparse-checkout set examples/image_generator/android
After creating a local version of the example code, you can import the project into Android Studio and run the app. For instructions, see the Setup Guide for Android.
Key components
The following files contain the crucial code for this image generation example application:
- ImageGenerationHelper.kt: Initializes the task and handles the image generation.
- DiffusionActivity.kt: Generates images when plugins or LoRA weights are not enabled.
- PluginActivity.kt: Implements the plugin models, which enables users to provide a condition image as an input.
- LoRAWeightActivity.kt: Accesses and handles the LoRA weights, which are used to customize foundation models and enable them to generate images of specific concepts.
Setup
This section describes key steps for setting up your development environment and code projects specifically to use Image Generator. For general information on setting up your development environment for using MediaPipe tasks, including platform version requirements, see the Setup guide for Android.
Dependencies
The Image Generator task uses the
com.google.mediapipe:tasks-vision-image-generator
library. Add this dependency
to the build.gradle
file of your Android app:
dependencies {
implementation 'com.google.mediapipe:tasks-vision-image-generator:latest.release'
}
For devices with Android 12 (API 31) or higher, add the native OpenCL library
dependency to AndroidManifest.xml
. For more, see the documentation on the
uses-native-library
tag.
Some Android devices may also require additional libraries:
<uses-native-library android:name="libOpenCL.so" android:required="false" />
<uses-native-library android:name="libOpenCL-car.so" android:required="false"/>
<uses-native-library android:name="libOpenCL-pixel.so" android:required="false" />
Model
The MediaPipe Image Generator task requires a trained foundation model that is compatible with this task. After downloading a model, install the required dependencies and convert ther model into a suitable a suitable format. Then, push the converted model to the Android device.
For more information on available trained models for Image Generator, see the task overview Models section.
Download foundation model
The Image Generator requires that the foundation model match the
runwayml/stable-diffusion-v1-5 EMA-only
model format, based on the following
model:
runwayml/stable-diffusion-v1-5.
Install dependencies and convert the model
$ pip install torch typing_extensions numpy Pillow requests pytorch_lightning absl-py
Run the
convert.py
script:
$ python3 convert.py --ckpt_path <ckpt_path> --output_path <output_path>
Push converted model to the device
Push the content of the <output_path>
folder to the Android device.
$ adb shell rm -r /data/local/tmp/image_generator/ # Remove any previously loaded weights
$ adb shell mkdir -p /data/local/tmp/image_generator/
$ adb push <output_path>/. /data/local/tmp/image_generator/bins
Download Plugin models and add LoRA weights (Optional)
If you intend to use a plugin model, check whether the model must be downloaded. For plugins that require an additional model, the plugin models must be either bundled in the APK or downloaded on-demand. Plugin models are lightweight (~23MB) and can be bundled directly in the APK. However, we recommended downloading plugin models on-demand.
If you have customized a model with LoRA, download them on-demand. For more information, see LoRA weights plugin model.
Create the task
The MediaPipe Image Generator task uses the createFromOptions()
function to set up the
task. The createFromOptions()
function accepts values for the configuration
options. For more information on configuration options, see Configuration
options.
Configuration options
This task has the following configuration options for Android apps:
Option Name | Description | Value Range |
---|---|---|
imageGeneratorModelDirectory |
The image generator model directory storing the model weights. | PATH |
loraWeightsFilePath |
Sets the path to LoRA weights file. Optional and only applicable if the model was customized with LoRA. | PATH |
errorListener |
Sets an optional error listener. | N/A |
The task also supports plugin models, which lets users include condition images in the task input, which the foundation model can augment and use as a reference for generation. These condition images can be face landmarks, edge outlines, and depth estimates, which the model uses as additional context and information to generate images.
When adding a plugin model to the foundation model, also configure the plugin
options. The Face landmark plugin uses faceConditionOptions
, the Canny edge
plugin uses edgeConditionOptions
, and the Depth plugin uses
depthConditionOptions
.
Canny edge options
Configure the following options in edgeConditionOptions
.
Option Name | Description | Value Range | Default Value |
---|---|---|---|
threshold1 |
First threshold for the hysteresis procedure. | Float |
100 |
threshold2 |
Second threshold for the hysteresis procedure. | Float |
200 |
apertureSize |
Aperture size for the Sobel operator. Typical range is between 3-7. | Integer |
3 |
l2Gradient |
Whether the L2 norm is used to calculate the image gradient magnitude, instead of the default L1 norm. | BOOLEAN |
False |
EdgePluginModelBaseOptions |
The BaseOptions object that sets the path
for the plugin model. |
BaseOptions object |
N/A |
For more information on how these configuration options work, see Canny edge detector.
Face landmark options
Configure the following options in faceConditionOptions
.
Option Name | Description | Value Range | Default Value |
---|---|---|---|
minFaceDetectionConfidence |
The minimum confidence score for the face detection to be considered successful. | Float [0.0,1.0] |
0.5 |
minFacePresenceConfidence |
The minimum confidence score of face presence score in the face landmark detection. | Float [0.0,1.0] |
0.5 |
faceModelBaseOptions |
The BaseOptions object that sets the path
for the model that creates the condition image. |
BaseOptions object |
N/A |
FacePluginModelBaseOptions |
The BaseOptions object that sets the path
for the plugin model. |
BaseOptions object |
N/A |
For more information on how these configuration options work, see the Face Landmarker task.
Depth options
Configure the following options in depthConditionOptions
.
Option Name | Description | Value Range | Default Value |
---|---|---|---|
depthModelBaseOptions |
The BaseOptions object that sets the path
for the model that creates the condition image. |
BaseOptions object |
N/A |
depthPluginModelBaseOptions |
The BaseOptions object that sets the path
for the plugin model. |
BaseOptions object |
N/A |
Create with only the foundation model
val options = ImageGeneratorOptions.builder()
.setImageGeneratorModelDirectory(modelPath)
.build()
imageGenerator = ImageGenerator.createFromOptions(context, options)
Create with plugins
If you are applying an optional plugin model, set the base options for the
plugin model with setPluginModelBaseOptions
. If the plugin model requires an
additional downloaded model to create the condition image, specify the path in
BaseOptions
.
Face landmark
val options = ImageGeneratorOptions.builder() .setImageGeneratorModelDirectory(modelPath) .build() val faceModelBaseOptions = BaseOptions.builder() .setModelAssetPath("face_landmarker.task") .build() val facePluginModelBaseOptions = BaseOptions.builder() .setModelAssetPath("face_landmark_plugin.tflite") .build() val faceConditionOptions = FaceConditionOptions.builder() .setFaceModelBaseOptions(faceModelBaseOptions) .setPluginModelBaseOptions(facePluginModelBaseOptions) .setMinFaceDetectionConfidence(0.3f) .setMinFacePresenceConfidence(0.3f) .build() val conditionOptions = ConditionOptions.builder() .setFaceConditionOptions(faceConditionOptions) .build() imageGenerator = ImageGenerator.createFromOptions(context, options, conditionOptions)
Canny Edge
val options = ImageGeneratorOptions.builder() .setImageGeneratorModelDirectory(modelPath) .build() val edgePluginModelBaseOptions = BaseOptions.builder() .setModelAssetPath("canny_edge_plugin.tflite") .build() val edgeConditionOptions = EdgeConditionOptions.builder() .setThreshold1(100.0f) .setThreshold2(100.0f) .setApertureSize(3) .setL2Gradient(false) .setPluginModelBaseOptions(edgePluginModelBaseOptions) .build() val conditionOptions = ConditionOptions.builder() .setEdgeConditionOptions(edgeConditionOptions) .build() imageGenerator = ImageGenerator.createFromOptions(context, options, conditionOptions)
Depth
val options = ImageGeneratorOptions.builder() .setImageGeneratorModelDirectory(modelPath) .build() val depthModelBaseOptions = BaseOptions.builder() .setModelAssetPath("depth_model.tflite") .build() val depthPluginModelBaseOptions = BaseOptions.builder() .setModelAssetPath("depth_plugin.tflite") .build() val depthConditionOptions = ConditionOptions.DepthConditionOptions.builder() .setDepthModelBaseOptions(depthModelBaseOptions) .setPluginModelBaseOptions(depthPluginModelBaseOptions) .build() val conditionOptions = ConditionOptions.builder() .setDepthConditionOptions(depthConditionOptions) .build() imageGenerator = ImageGenerator.createFromOptions(context, options, conditionOptions)
Create with LoRA weights
If you are including LoRA weights, use the loraWeightsFilePath
parameter to
point to the path location.
val options = ImageGeneratorOptions.builder()
.setLoraWeightsFilePath(weightsPath)
.setImageGeneratorModelDirectory(modelPath)
.build()
imageGenerator = ImageGenerator.createFromOptions(context, options)
Prepare data
The Image Generator accepts the following inputs:
- prompt (required): The text prompt describing the image to be generated.
- iterations (required): The total iterations to generate the image. A good starting point is 20.
- seed (required): The random seed used during image generation.
- condition image (optional): The image the model uses as a reference for generation. Only applicable when using a plugin model.
- condition type (optional): The type of plugin model used with the task. Only applicable when using a plugin model.
Inputs with only the foundation model
fun setInput(prompt: String, iteration: Int, seed: Int) {
imageGenerator.setInputs(prompt, iteration, seed)
}
Inputs with plugins
If you are applying an optional plugin model, also use the conditionType
parameter to choose the plugin model and the sourceConditionImage
parameter to
generate the condition image.
Option Name | Description | Value |
---|---|---|
conditionType |
The plugin model applied to the foundation model. | {"FACE", "EDGE", "DEPTH"} |
sourceConditionImage |
The source image used to create the condition image. | MPImage object |
If you are using a plugin model, use the createConditionImage
to create the
condition image:
fun createConditionImage(
inputImage: MPImage,
conditionType: ConditionType
): Bitmap {
val result =
imageGenerator.createConditionImage(inputImage, conditionType)
return BitmapExtractor.extract(result)
}
After creating the condition image, include in as an input along with the prompt, seed, and number of iterations.
imageGenerator.setInputs(
prompt,
conditionalImage,
conditionType,
iteration,
seed
)
Inputs with LoRA weights
If you are using LoRA weights, ensure that the token is in the text prompt if you intend to generate an image with the specific concept represented by the weights.
fun setInput(prompt: String, iteration: Int, seed: Int) {
imageGenerator.setInputs(prompt, iteration, seed)
}
Run the task
Use the generate()
method to generate an image using the inputs provided in
the previous section. This produces a single generated image.
Generate with only the foundation model
fun generate(prompt: String, iteration: Int, seed: Int): Bitmap {
val result = imageGenerator.generate(prompt, iteration, seed)
val bitmap = BitmapExtractor.extract(result?.generatedImage())
return bitmap
}
Generate with plugins
fun generate(
prompt: String,
inputImage: MPImage,
conditionType: ConditionType,
iteration: Int,
seed: Int
): Bitmap {
val result = imageGenerator.generate(
prompt,
inputImage,
conditionType,
iteration,
seed
)
val bitmap = BitmapExtractor.extract(result?.generatedImage())
return bitmap
}
Generate with LoRA weights
The process of generating images with a model customized with LoRA weights is similar to the process with a standard foundation model. Ensure that the token is included in the prompt and run the same code.
fun generate(prompt: String, iteration: Int, seed: Int): Bitmap {
val result = imageGenerator.generate(prompt, iteration, seed)
val bitmap = BitmapExtractor.extract(result?.generatedImage())
return bitmap
}
Iterative generation
The Image Generator can also output the generated intermediate images during each
iteration, as defined in the iterations
input parameter. To view these
intermediate results, call the setInputs
method, then call execute()
to run
each step. Set the showResult
parameter to true
to display the intermediate
results.
fun execute(showResult: Boolean): Bitmap {
val result = imageGenerator.execute(showResult)
val bitmap =
BitmapExtractor.extract(result.generatedImage())
return bitmap
}
Handle and display results
The Image Generator returns a ImageGeneratorResult
, which includes the generated
image, a timestamp of the time of completion, and the conditional image if one
was provided as an input.
val bitmap = BitmapExtractor.extract(result.generatedImage())
The following image was generated from the following inputs, using only a foundation model.
Inputs:
- Prompt: "a colorful cartoon raccoon wearing a floppy wide brimmed hat holding a stick walking through the forest, animated, three-quarter view, painting"
- Seed: 312687592
- Iterations: 20
Generated image: