The Image Segmenter task lets you divide images into regions based on predefined categories, and apply visual effects like background blurring. These instructions show you how to use the Image Segmenter with iOS apps.
The code sample described in these instructions is available on GitHub.
You can see this task in action by viewing the Web demo. For more information about the capabilities, models, and configuration options of this task, see the Overview.
Code example
The MediaPipe Tasks code example contains a simple implementation of an Image Segmenter app for iOS.
The example implements an image segmenter that outputs category masks. It uses the camera on a physical iOS device to perform image segmentation on a live camera feed, or on images and videos from the device gallery.
You can use the app as a starting point for your own iOS app, or refer to it when modifying an existing app. The Image Segmenter example code is hosted on GitHub.
Download the code
The following instructions show you how to create a local copy of the example code using the git command line tool.
To download the example code:
Clone the git repository using the following command:
git clone https://github.com/google-ai-edge/mediapipe-samples/
Optionally, configure your git instance to use sparse checkout, so you have only the files for the Image Segmenter example app:
cd mediapipe git sparse-checkout init --cone git sparse-checkout set examples/image_segmentation/ios/
After creating a local version of the example code, you can install the MediaPipe task library, open the project using Xcode and run the app. For instructions, see the Setup Guide for iOS.
Key components
The following files contain the crucial code for the Image Segmenter example application:
- ImageSegmenterService.swift: Initializes the Image Segmenter, handles the model selection, and runs inference on the input data.
- CameraViewController.swift: Implements the UI for the live camera feed input mode and visualizes the results.
- MediaLibraryViewController.swift Implements the UI for the still image and video file input mode and visualizes the results.
Setup
This section describes key steps for setting up your development environment and code projects to use Image Segmenter. For general information on setting up your development environment for using MediaPipe tasks, including platform version requirements, see the Setup guide for iOS.
Dependencies
Image Segmenter uses the MediaPipeTasksVision
library, which must be installed
using CocoaPods. The library is compatible with both Swift and Objective-C apps
and does not require any additional language-specific setup.
For instructions to install CocoaPods on macOS, refer to the CocoaPods
installation guide.
For instructions on how to create a Podfile
with the necessary pods for your
app, refer to Using
CocoaPods.
Add the MediaPipeTasksVision pod in the Podfile
using the following code:
target 'MyImageSegmenterApp' do
use_frameworks!
pod 'MediaPipeTasksVision'
end
If your app includes unit test targets, refer to the Set Up Guide for
iOS for additional information on setting up
your Podfile
.
Model
The MediaPipe Image Segmenter task requires a trained model that is compatible with this task. For more information about the available trained models for Image Segmenter, see the task overview Models section.
Select and download a model, and add it to your project directory using Xcode. For instructions on how to add files to your Xcode project, refer to Managing files and folders in your Xcode project.
Use the BaseOptions.modelAssetPath
property to specify the path to the model
in your app bundle. For a code example, see the next section.
Create the task
You can create the Image Segmenter task by calling one of its initializers. The
ImageSegmenter(options:)
initializer accepts values for the configuration
options.
If you don't need an Image Segmenter initialized with customized configuration
options, you can use the ImageSegmenter(modelPath:)
initializer to create an
Image Segmenter with the default options. For more information about configuration
options, see Configuration Overview.
The Image Segmenter task supports 3 input data types: still images, video files
and live video streams. By default, ImageSegmenter(modelPath:)
initializes a
task for still images. If you want your task to be initialized to process video
files or live video streams, use ImageSegmenter(options:)
to specify the video
or livestream running mode. The livestream mode also requires the additional
imageSegmenterLiveStreamDelegate
configuration option, which enables the
Image Segmenter to deliver image segmentation results to the delegate
asynchronously.
Choose the tab corresponding to your running mode to see how to create the task and run inference.
Swift
Image
import MediaPipeTasksVision let modelPath = Bundle.main.path(forResource: "model", ofType: "tflite") let options = ImageSegmenterOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .image options.shouldOutputCategoryMask = true options.shouldOutputConfidenceMasks = false let imageSegmenter = try ImageSegmenter(options: options)
Video
import MediaPipeTasksVision let modelPath = Bundle.main.path(forResource: "model", ofType: "tflite") let options = ImageSegmenterOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .video options.shouldOutputCategoryMask = true options.shouldOutputConfidenceMasks = false let imageSegmenter = try ImageSegmenter(options: options)
Livestream
import MediaPipeTasksVision // Class that conforms to the `imageSegmenterLiveStreamDelegate` protocol and // implements the method that the image segmenter calls once it finishes // performing segmentation of each input frame. class ImageSegmenterResultProcessor: NSObject, ImageSegmenterLiveStreamDelegate { func imageSegmenter( _ imageSegmenter: ImageSegmenter, didFinishSegmentation result: ImageSegmenterResult?, timestampInMilliseconds: Int, error: Error?) { // Process the image segmentation result or errors here. } } let modelPath = Bundle.main.path(forResource: "model", ofType: "tflite") let options = ImageSegmenterOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .liveStream options.shouldOutputCategoryMask = true options.shouldOutputConfidenceMasks = false // Set `imageSegmenterLiveStreamDelegate` to the object of the class that // confirms to the `ImageSegmenterLiveStreamDelegate` protocol. let processor = ImageSegmenterResultProcessor() options.imageSegmenterLiveStreamDelegate = processor let imageSegmenter = try ImageSegmenter(options: options)
Objective-C
Image
@import MediaPipeTasksVision; NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageSegmenterOptions *options = [[MPPImageSegmenterOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeImage; options.shouldOutputCategoryMask = YES; options.shouldOutputConfidenceMasks = NO; MPPImageSegmenter *imageSegmenter = [[MPPImageSegmenter alloc] initWithOptions:options error:nil];
Video
@import MediaPipeTasksVision; NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageSegmenterOptions *options = [[MPPImageSegmenterOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeVideo; options.shouldOutputCategoryMask = YES; options.shouldOutputConfidenceMasks = NO; MPPImageSegmenter *imageSegmenter = [[MPPImageSegmenter alloc] initWithOptions:options error:nil];
Livestream
@import MediaPipeTasksVision; // Class that conforms to the `MPPImageSegmenterLiveStreamDelegate` protocol // and implements the method that the image segmenter calls once it finishes // performing segmentation of each input frame. @interface APPImageSegmenterResultProcessor : NSObject@end @implementation APPImageSegmenterResultProcessor - (void)imageSegmenter:(MPPImageSegmenter *)imageSegmenter didFinishSegmentationWithResult:(MPPImageSegmenterResult *)imageSegmenterResult timestampInMilliseconds:(NSInteger)timestampInMilliseconds error:(NSError *)error { // Process the image segmentation result or errors here. } @end NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageSegmenterOptions *options = [[MPPImageSegmenterOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeLiveStream; options.shouldOutputCategoryMask = YES; options.shouldOutputConfidenceMasks = NO; // Set `imageSegmenterLiveStreamDelegate` to the object of the class that // confirms to the `MPPImageSegmenterLiveStreamDelegate` protocol. APPImageSegmenterResultProcessor *processor = [APPImageSegmenterResultProcessor new]; options.imageSegmenterLiveStreamDelegate = processor; MPPImageSegmenter *imageSegmenter = [[MPPImageSegmenter alloc] initWithOptions:options error:nil];
The Image Segmenter example code implementation allows the user to switch between processing modes. The approach makes the task creation code more complicated and may not be appropriate for your use case.
Configuration options
This task has the following configuration options for iOS apps:
Option Name | Description | Value Range | Default Value |
---|---|---|---|
runningMode |
Sets the running mode for the task. There are three
modes: IMAGE: The mode for single image inputs. VIDEO: The mode for decoded frames of a video. LIVE_STREAM: The mode for a livestream of input data, such as from a camera. In this mode, ImageSegmenterLiveStreamDelegate
must be set to an instance of a class that implements the
ImageSegmenterLiveStreamDelegate to receive the segmentation
results asynchronously.
|
{RunningMode.image, RunningMode.video, RunningMode.liveStream } |
RunningMode.image |
shouldOutputCategoryMask |
If set to True , the output includes a segmentation mask
as a uint8 image, where each pixel value indicates the winning category
value. |
{True, False } |
False |
shouldOutputConfidenceMasks |
If set to True , the output includes a segmentation mask
as a float value image, where each float value represents the confidence
score map of the category. |
{True, False } |
True |
displayNamesLocale |
Sets the language of labels to use for display names provided in the
metadata of the task's model, if available. Default is en for
English. You can add localized labels to the metadata of a custom model
using the TensorFlow Lite Metadata Writer API |
Locale code | en |
result_callback |
Sets the result listener to receive the segmentation results
asynchronously when the image segmenter is in the LIVE_STREAM mode.
Can only be used when running mode is set to LIVE_STREAM |
N/A | N/A |
When the running mode is set to LIVE_STREAM
, the Image Segmenter requires the
additional imageSegmenterLiveStreamDelegate
configuration option, which
enables the Image Segmenter to deliver image segmentation results asynchronously.
The delegate must implement the
imageSegmenter(_:didFinishSegmentation:timestampInMilliseconds:error:)
method,
which the Image Segmenter calls after processing the results of performing
segmentation on each frame.
Option name | Description | Value Range | Default Value |
---|---|---|---|
imageSegmenterLiveStreamDelegate |
Enables Image Segmenter to receive the results of performing image
segmentation asynchronously in livestream mode. The class whose instance is
set to this property must implement the
imageSegmenter(_:didFinishSegmentation:timestampInMilliseconds:error:)
method. |
Not applicable | Not set |
Prepare data
You need to convert the input image or frame to an MPImage
object before
passing it to the Image Segmenter. MPImage
supports different types of iOS image
formats, and can use them in any running mode for inference. For more
information about MPImage
, refer to the
MPImage API
Choose an iOS image format based on your use case and the running mode your
application requires.MPImage
accepts the UIImage
, CVPixelBuffer
, and
CMSampleBuffer
iOS image formats.
UIImage
The UIImage
format is well-suited for the following running modes:
Images: images from an app bundle, user gallery, or file system formatted as
UIImage
images can be converted to anMPImage
object.Videos: use AVAssetImageGenerator to extract video frames to the CGImage format, then convert them to
UIImage
images.
Swift
// Load an image on the user's device as an iOS `UIImage` object. // Convert the `UIImage` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(uiImage: image)
Objective-C
// Load an image on the user's device as an iOS `UIImage` object. // Convert the `UIImage` object to a MediaPipe's Image object having the default // orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
The example initializes an MPImage
with the default
UIImage.Orientation.Up
orientation. You can initialize an MPImage
with any of the supported
UIImage.Orientation
values. Image Segmenter does not support mirrored orientations like .upMirrored
,
.downMirrored
, .leftMirrored
, .rightMirrored
.
For more information about UIImage
, refer to the UIImage Apple Developer
Documentation.
CVPixelBuffer
The CVPixelBuffer
format is well-suited for applications that generate frames
and use the iOS CoreImage
framework for processing.
The CVPixelBuffer
format is well-suited for the following running modes:
Images: apps that generate
CVPixelBuffer
images after some processing using iOS'sCoreImage
framework can be sent to the Image Segmenter in the image running mode.Videos: video frames can be converted to the
CVPixelBuffer
format for processing, and then sent to the Image Segmenter in video mode.livestream: apps using an iOS camera to generate frames may be converted into the
CVPixelBuffer
format for processing before being sent to the Image Segmenter in livestream mode.
Swift
// Obtain a CVPixelBuffer. // Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(pixelBuffer: pixelBuffer)
Objective-C
// Obtain a CVPixelBuffer. // Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the // default orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
For more information about CVPixelBuffer
, refer to the CVPixelBuffer Apple
Developer
Documentation.
CMSampleBuffer
The CMSampleBuffer
format stores media samples of a uniform media type, and is
well-suited for the livestream running mode. Live frames from iOS cameras are
asynchronously delivered in the CMSampleBuffer
format by iOS
AVCaptureVideoDataOutput.
Swift
// Obtain a CMSampleBuffer. // Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(sampleBuffer: sampleBuffer)
Objective-C
// Obtain a `CMSampleBuffer`. // Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the // default orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithSampleBuffer:sampleBuffer error:nil];
For more information about CMSampleBuffer
, refer to the CMSampleBuffer Apple
Developer
Documentation.
Run the task
To run the Image Segmenter, use the segment()
method specific to the assigned
running mode:
- Still image:
segment(image:)
- Video:
segment(videoFrame:timestampInMilliseconds:)
- Livestream:
segmentAsync(image:timestampInMilliseconds:)
The following code samples show simple examples of how to run Image Segmenter in these different running modes:
Swift
Image
let result = try imageSegmenter.segment(image: image)
Video
let result = try imageSegmenter.segment( videoFrame: image, timestampInMilliseconds: timestamp)
Live stream
try imageSegmenter.segmentAsync( image: image, timestampInMilliseconds: timestamp)
Objective-C
Image
MPPImageSegmenterResult *result = [imageSegmenter segmentImage:image error:nil];
Video
MPPImageSegmenterResult *result = [imageSegmenter segmentVideoFrame:image timestampInMilliseconds:timestamp error:nil];
Live stream
BOOL success = [imageSegmenter segmentAsyncImage:image timestampInMilliseconds:timestamp error:nil];
The Image Segmenter code example shows the implementations of each of these modes
in more detail segment(image:)
,
segment(videoFrame:timestampInMilliseconds:)
, and
segmentAsync(image:timestampInMilliseconds:)
.
Note the following:
When running in video mode or live stream mode, you must also provide the timestamp of the input frame to the Image Segmenter task.
When running in image or video mode, the Image Segmenter task blocks the current thread until it finishes processing the input image or frame. To avoid blocking the current thread, execute the processing in a background thread using iOS Dispatch or NSOperation frameworks.
When running in live stream mode, the Image Segmenter task returns immediately and doesn't block the current thread. It invokes the
imageSegmenter(_:didFinishSegmentation:timestampInMilliseconds:error:)
method with the image segmenter after processing each input frame. The Image Segmenter invokes this method asynchronously on a dedicated serial dispatch queue. For displaying results on the user interface, dispatch the results to the main queue after processing the results. If thesegmentAsync
function is called when the Image Segmenter task is busy processing another frame, the Image Segmenter ignores the new input frame.
Handle and display results
Upon running inference, the Image Segmenter task returns a ImageSegmenterResult
object which contains the results of the segmentation task. The content of the
output depends on the output type you set when you
configured
the task.
The following images show a visualization of the task output for a category
value mask. The category mask range is [0, 255]
and each pixel value
represents the winning category index of the model output. The winning category
index is has the highest score among the categories the model can recognize.
Original image and category mask output. Source image from the Pascal VOC 2012 dataset.
The Image Segmenter example code demonstrates how to display the Image Segmenter results, see the code example for details.