Руководство по стилизации лица для Интернета

Задача MediaPipe Face Stylizer позволяет применять стилизацию лиц к лицам на изображении. Вы можете использовать это задание для создания виртуальных аватаров в различных стилях.

Пример кода, описанный в этой инструкции, доступен на GitHub . Дополнительные сведения о возможностях, моделях и параметрах конфигурации этой задачи см. в разделе Обзор .

Пример кода

В примере кода Face Stylizer представлена ​​полная реализация этой задачи на языке JavaScript. Этот код поможет вам протестировать эту задачу и приступить к созданию собственного приложения для стилизации лица. Вы можете просматривать, запускать и редактировать пример кода Face Stylizer, используя только веб-браузер.

Настраивать

В этом разделе описаны ключевые шаги по настройке среды разработки специально для использования Face Stylizer. Общие сведения о настройке веб-среды и среды разработки JavaScript, включая требования к версии платформы, см. в руководстве по настройке веб-среды .

JavaScript-пакеты

Код Face Stylizer доступен через пакет MediaPipe @mediapipe/tasks-vision NPM . Вы можете найти и загрузить эти библиотеки, следуя инструкциям в руководстве по установке платформы.

Вы можете установить необходимые пакеты через NPM, используя следующую команду:

npm install @mediapipe/tasks-vision

Если вы хотите импортировать код задачи с помощью службы сети доставки контента (CDN), добавьте следующий код в тег <head> вашего HTML-файла:

<!-- You can replace JSDeliver with another CDN if you prefer -->
<head>
  <script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision/vision_bundle.js"
    crossorigin="anonymous"></script>
</head>

Модель

Для задачи MediaPipe Face Stylizer требуется обученная модель, совместимая с этой задачей. Дополнительную информацию о доступных обученных моделях для Face Stylizer смотрите в разделе «Модели» обзора задач.

Выберите и загрузите модель, а затем сохраните ее в каталоге проекта:

<dev-project-root>/app/shared/models/

Создать задачу

Используйте одну из функций createFrom...() Face Stylizer, чтобы подготовить задачу к выполнению выводов. Используйте функцию createFromModelPath() с относительным или абсолютным путем к файлу обученной модели. Если ваша модель уже загружена в память, вы можете использовать метод createFromModelBuffer() .

В приведенном ниже примере кода показано использование функции createFromOptions() для настройки задачи. Функция createFromOptions позволяет настроить Face Stylizer с помощью параметров конфигурации.

Следующий код демонстрирует, как создать и настроить задачу с настраиваемыми параметрами:

const vision = await FilesetResolver.forVisionTasks(
  // path/to/wasm/root
  "https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
);
const facestylizer = await FaceStylizer.createFromOptions(
    vision,
    {
      baseOptions: {
        modelAssetPath: "https://storage.googleapis.com/mediapipe-models/face_stylizer/blaze_face_stylizer/float32/latest/face_stylizer_color_sketch.task"
      },
    });

Подготовьте данные

Face Stylizer может стилизовать лица на изображениях в любом формате, поддерживаемом хост-браузером. Задача также выполняет предварительную обработку входных данных, включая изменение размера, поворот и нормализацию значений.

Запустить задачу

Face Stylizer использует метод stylize() для инициирования выводов. Задача обрабатывает данные, пытается стилизовать лица, а затем сообщает о результатах. Вызовы метода stylize() Face Stylizer выполняются синхронно и блокируют поток пользовательского интерфейса.

Следующий код демонстрирует, как выполнить обработку с помощью модели задачи:

const image = document.getElementById("image") as HTMLImageElement;
const faceStylizerResult = faceStylizer.stylize(image);

Обработка и отображение результатов

Face Stylizer возвращает объект MPImage со стилизацией самого заметного лица во входном изображении.

Ниже показан пример выходных данных этой задачи:

Вышеупомянутый результат был создан путем применения модели цветного эскиза к следующему входному изображению: