ai.google.dev पर देखें | Colab notebook को आज़माएं | GitHub पर notebook देखें |
खास जानकारी
इस ट्यूटोरियल में बताया गया है कि अपने डेटासेट में आउटलायर का पता लगाने के लिए, Gemini API के साथ एम्बेड की गई फ़ाइलों का इस्तेमाल कैसे किया जा सकता है. आपको t-SNE का इस्तेमाल करके, 20 न्यूज़ग्रुप डेटासेट के एक सबसेट को विज़ुअलाइज़ करना है. साथ ही, हर कैटगरी के क्लस्टर के सेंट्रल पॉइंट के खास दायरे से बाहर, आउटलायर का पता लगाना है.
Gemini API से जनरेट किए गए एम्बेड करने की सुविधा का इस्तेमाल शुरू करने के बारे में ज़्यादा जानने के लिए, Python क्विकस्टार्ट लेख पढ़ें.
ज़रूरी शर्तें
इस क्विकस्टार्ट को Google Colab में चलाया जा सकता है.
अपने डेवलपमेंट एनवायरमेंट में इस क्विकस्टार्ट को पूरा करने के लिए, पक्का करें कि आपका एनवायरमेंट इन शर्तों को पूरा करता हो:
- Python 3.9 और उसके बाद के वर्शन
- नोटबुक को चलाने के लिए
jupyter
को इंस्टॉल किया गया.
सेटअप
सबसे पहले, Gemini API की Python लाइब्रेरी को डाउनलोड और इंस्टॉल करें.
pip install -U -q google.generativeai
import re
import tqdm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import google.generativeai as genai
# Used to securely store your API key
from google.colab import userdata
from sklearn.datasets import fetch_20newsgroups
from sklearn.manifold import TSNE
कोई एपीआई पासकोड पाएं
Gemini API का इस्तेमाल करने से पहले, आपको एपीआई पासकोड हासिल करना होगा. अगर आपके पास पहले से कोई बटन नहीं है, तो Google AI Studio में बस एक क्लिक करके बटन बनाएं.
Colab में, "GIF" में जाकर सीक्रेट मैनेजर में कुंजी जोड़ें क्लिक करें. इसे API_KEY
नाम दें.
एपीआई पासकोड मिलने के बाद, उसे SDK टूल को भेजें. आप इसे दो तरीकों से कर सकते हैं:
- कुंजी को
GOOGLE_API_KEY
एनवायरमेंट वैरिएबल में डालें. SDK टूल इसे वहां से अपने-आप चुन लेगा. - कुंजी को
genai.configure(api_key=...)
को पास करें
genai.configure(api_key=GOOGLE_API_KEY)
for m in genai.list_models():
if 'embedContent' in m.supported_generation_methods:
print(m.name)
models/embedding-001 models/embedding-001
डेटासेट तैयार करें
20 न्यूज़ग्रुप टेक्स्ट डेटासेट में, 20 विषयों पर 18,000 न्यूज़ग्रुप पोस्ट हैं. इन्हें ट्रेनिंग और टेस्ट सेट में बांटा गया है. ट्रेनिंग और टेस्ट डेटासेट के बीच का बंटवारा, किसी खास तारीख से पहले और उसके बाद पोस्ट किए गए मैसेज के हिसाब से होता है. इस ट्यूटोरियल में ट्रेनिंग के सबसेट का इस्तेमाल किया गया है.
newsgroups_train = fetch_20newsgroups(subset='train')
# View list of class names for dataset
newsgroups_train.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']
ट्रेनिंग सेट का पहला उदाहरण यहां दिया गया है.
idx = newsgroups_train.data[0].index('Lines')
print(newsgroups_train.data[0][idx:])
Lines: 15 I was wondering if anyone out there could enlighten me on this car I saw the other day. It was a 2-door sports car, looked to be from the late 60s/ early 70s. It was called a Bricklin. The doors were really small. In addition, the front bumper was separate from the rest of the body. This is all I know. If anyone can tellme a model name, engine specs, years of production, where this car is made, history, or whatever info you have on this funky looking car, please e-mail. Thanks, - IL ---- brought to you by your neighborhood Lerxst ----
# Apply functions to remove names, emails, and extraneous words from data points in newsgroups.data
newsgroups_train.data = [re.sub(r'[\w\.-]+@[\w\.-]+', '', d) for d in newsgroups_train.data] # Remove email
newsgroups_train.data = [re.sub(r"\([^()]*\)", "", d) for d in newsgroups_train.data] # Remove names
newsgroups_train.data = [d.replace("From: ", "") for d in newsgroups_train.data] # Remove "From: "
newsgroups_train.data = [d.replace("\nSubject: ", "") for d in newsgroups_train.data] # Remove "\nSubject: "
# Cut off each text entry after 5,000 characters
newsgroups_train.data = [d[0:5000] if len(d) > 5000 else d for d in newsgroups_train.data]
# Put training points into a dataframe
df_train = pd.DataFrame(newsgroups_train.data, columns=['Text'])
df_train['Label'] = newsgroups_train.target
# Match label to target name index
df_train['Class Name'] = df_train['Label'].map(newsgroups_train.target_names.__getitem__)
df_train
इसके बाद, ट्रेनिंग वाले डेटासेट में 150 डेटा पॉइंट लेकर और कुछ कैटगरी चुनकर, कुछ डेटा का सैंपल लें. इस ट्यूटोरियल में विज्ञान की कैटगरी का इस्तेमाल किया गया है.
# Take a sample of each label category from df_train
SAMPLE_SIZE = 150
df_train = (df_train.groupby('Label', as_index = False)
.apply(lambda x: x.sample(SAMPLE_SIZE))
.reset_index(drop=True))
# Choose categories about science
df_train = df_train[df_train['Class Name'].str.contains('sci')]
# Reset the index
df_train = df_train.reset_index()
df_train
df_train['Class Name'].value_counts()
sci.crypt 150 sci.electronics 150 sci.med 150 sci.space 150 Name: Class Name, dtype: int64
एम्बेड करना
इस सेक्शन में, आपको Gemini API से एम्बेड की गई चीज़ों का इस्तेमाल करके, डेटाफ़्रेम में अलग-अलग टेक्स्ट के लिए एम्बेड करने की प्रोसेस जनरेट करने का तरीका बताया गया है.
मॉडल एम्बेडिंग-001 के साथ एम्बेड करने के लिए एपीआई में बदलाव
एम्बेड करने के नए मॉडल, एम्बेडिंग-001 के लिए, एक नया टास्क टाइप पैरामीटर और वैकल्पिक टाइटल उपलब्ध है. यह सिर्फ़ Task_type=RETRIEVAL_DOCUMENT
के साथ मान्य होता है.
ये नए पैरामीटर, एम्बेड करने के सबसे नए मॉडल पर ही लागू होते हैं.ये टास्क इस तरह के हैं:
टास्क किस तरह का है | ब्यौरा |
---|---|
RETRIEVAL_QUERY | तय करता है कि दिया गया टेक्स्ट, खोज/वापस पाने की सेटिंग में क्वेरी है. |
RETRIEVAL_DOCUMENT | तय करता है कि दिया गया टेक्स्ट, खोज/वापस पाने की सेटिंग में मौजूद दस्तावेज़ है. |
SEMANTIC_SIMILARITY | इससे पता चलता है कि दिए गए टेक्स्ट का इस्तेमाल, सिमैंटिक टेक्स्ट वाली समानता (STS) के लिए किया जाएगा. |
वर्गीकरण | इससे पता चलता है कि एम्बेड करने की सुविधा का इस्तेमाल, कैटगरी तय करने के लिए किया जाएगा. |
क्लस्टरिंग | इससे पता चलता है कि एम्बेड करने की सुविधा का इस्तेमाल, क्लस्टर बनाने के लिए किया जाएगा. |
from tqdm.auto import tqdm
tqdm.pandas()
from google.api_core import retry
def make_embed_text_fn(model):
@retry.Retry(timeout=300.0)
def embed_fn(text: str) -> list[float]:
# Set the task_type to CLUSTERING.
embedding = genai.embed_content(model=model,
content=text,
task_type="clustering")['embedding']
return np.array(embedding)
return embed_fn
def create_embeddings(df):
model = 'models/embedding-001'
df['Embeddings'] = df['Text'].progress_apply(make_embed_text_fn(model))
return df
df_train = create_embeddings(df_train)
df_train.drop('index', axis=1, inplace=True)
0%| | 0/600 [00:00<?, ?it/s]
डाइमेंशन में कमी
दस्तावेज़ एम्बेड करने वाले वेक्टर का डाइमेंशन 768 है. एम्बेड किए गए दस्तावेज़ों को एक साथ ग्रुप करने के तरीके को विज़ुअलाइज़ करने के लिए, आपको डाइमेंशनलिटी रिडक्शन को लागू करना होगा. इसकी वजह यह है कि एम्बेड को सिर्फ़ 2D या 3D स्पेस में विज़ुअलाइज़ किया जा सकता है. संदर्भ के हिसाब से एक जैसे दस्तावेज़, स्पेस में एक-दूसरे के ज़्यादा करीब होने चाहिए. हालांकि, एक जैसे दो दस्तावेज़ नहीं होने चाहिए.
len(df_train['Embeddings'][0])
768
# Convert df_train['Embeddings'] Pandas series to a np.array of float32
X = np.array(df_train['Embeddings'].to_list(), dtype=np.float32)
X.shape
(600, 768)
डाइमेंशनिकिटी में कमी करने के लिए, टी-डिस्ट्रिब्यूटेड स्टॉकास्टिक नेबर एम्बेडिंग (t-SNE) अप्रोच को लागू किया जाएगा. यह तकनीक डाइमेंशन की संख्या कम करती है, जबकि क्लस्टर (एक-दूसरे के पास मौजूद पॉइंट एक-दूसरे के पास रहते हैं) को सुरक्षित रखा जाता है. ओरिजनल डेटा के लिए, मॉडल ऐसा डिस्ट्रिब्यूशन बनाने की कोशिश करता है जिसमें अन्य डेटा पॉइंट "पड़ोसी" हों (उदाहरण के लिए, उनका एक जैसा मतलब होता है). इसके बाद, यह विज़ुअलाइज़ेशन में एक जैसा डिस्ट्रिब्यूशन बनाए रखने के लिए मकसद फ़ंक्शन को ऑप्टिमाइज़ करता है.
tsne = TSNE(random_state=0, n_iter=1000)
tsne_results = tsne.fit_transform(X)
df_tsne = pd.DataFrame(tsne_results, columns=['TSNE1', 'TSNE2'])
df_tsne['Class Name'] = df_train['Class Name'] # Add labels column from df_train to df_tsne
df_tsne
fig, ax = plt.subplots(figsize=(8,6)) # Set figsize
sns.set_style('darkgrid', {"grid.color": ".6", "grid.linestyle": ":"})
sns.scatterplot(data=df_tsne, x='TSNE1', y='TSNE2', hue='Class Name', palette='Set2')
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.title('Scatter plot of news using t-SNE')
plt.xlabel('TSNE1')
plt.ylabel('TSNE2');
आउटलायर डिटेक्शन
यह पता लगाने के लिए कि कौनसे पॉइंट असामान्य हैं, आपको पता चलेगा कि कौनसे पॉइंट इनलायर और आउटलायर हैं. केंद्रक, या उस स्थान को ढूंढें जो समूह के केंद्र को दर्शाता है, और दूरी का उपयोग करके आउटलेयर्स बिंदु निर्धारित करें.
हर कैटगरी का सेंट्रोइड हासिल करके शुरुआत करें.
def get_centroids(df_tsne):
# Get the centroid of each cluster
centroids = df_tsne.groupby('Class Name').mean()
return centroids
centroids = get_centroids(df_tsne)
centroids
def get_embedding_centroids(df):
emb_centroids = dict()
grouped = df.groupby('Class Name')
for c in grouped.groups:
sub_df = grouped.get_group(c)
# Get the centroid value of dimension 768
emb_centroids[c] = np.mean(sub_df['Embeddings'], axis=0)
return emb_centroids
emb_c = get_embedding_centroids(df_train)
आपको मिले हर सेंट्रोइड की तुलना बाकी पॉइंट से करें.
# Plot the centroids against the cluster
fig, ax = plt.subplots(figsize=(8,6)) # Set figsize
sns.set_style('darkgrid', {"grid.color": ".6", "grid.linestyle": ":"})
sns.scatterplot(data=df_tsne, x='TSNE1', y='TSNE2', hue='Class Name', palette='Set2');
sns.scatterplot(data=centroids, x='TSNE1', y='TSNE2', color="black", marker='X', s=100, label='Centroids')
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.title('Scatter plot of news using t-SNE with centroids')
plt.xlabel('TSNE1')
plt.ylabel('TSNE2');
दायरा चुनें. कैटगरी के सेंट्रोइड से बाहर की किसी भी सीमा को आउटलायर माना जाता है.
def calculate_euclidean_distance(p1, p2):
return np.sqrt(np.sum(np.square(p1 - p2)))
def detect_outlier(df, emb_centroids, radius):
for idx, row in df.iterrows():
class_name = row['Class Name'] # Get class name of row
# Compare centroid distances
dist = calculate_euclidean_distance(row['Embeddings'],
emb_centroids[class_name])
df.at[idx, 'Outlier'] = dist > radius
return len(df[df['Outlier'] == True])
range_ = np.arange(0.3, 0.75, 0.02).round(decimals=2).tolist()
num_outliers = []
for i in range_:
num_outliers.append(detect_outlier(df_train, emb_c, i))
# Plot range_ and num_outliers
fig = plt.figure(figsize = (14, 8))
plt.rcParams.update({'font.size': 12})
plt.bar(list(map(str, range_)), num_outliers)
plt.title("Number of outliers vs. distance of points from centroid")
plt.xlabel("Distance")
plt.ylabel("Number of outliers")
for i in range(len(range_)):
plt.text(i, num_outliers[i], num_outliers[i], ha = 'center')
plt.show()
गड़बड़ी की पहचान करने वाले टूल को कितना संवेदनशील बनाना है, इसके आधार पर आपके पास यह चुनने का विकल्प होता है कि आपको किस दायरे का इस्तेमाल करना है. फ़िलहाल, 0.62 का इस्तेमाल किया जाता है, लेकिन आपके पास इस वैल्यू को बदलने का विकल्प है.
# View the points that are outliers
RADIUS = 0.62
detect_outlier(df_train, emb_c, RADIUS)
df_outliers = df_train[df_train['Outlier'] == True]
df_outliers.head()
# Use the index to map the outlier points back to the projected TSNE points
outliers_projected = df_tsne.loc[df_outliers['Outlier'].index]
पारदर्शी लाल रंग का इस्तेमाल करके, आउटलेयर को प्लॉट करें और उनकी व्याख्या करें.
fig, ax = plt.subplots(figsize=(8,6)) # Set figsize
plt.rcParams.update({'font.size': 10})
sns.set_style('darkgrid', {"grid.color": ".6", "grid.linestyle": ":"})
sns.scatterplot(data=df_tsne, x='TSNE1', y='TSNE2', hue='Class Name', palette='Set2');
sns.scatterplot(data=centroids, x='TSNE1', y='TSNE2', color="black", marker='X', s=100, label='Centroids')
# Draw a red circle around the outliers
sns.scatterplot(data=outliers_projected, x='TSNE1', y='TSNE2', color='red', marker='o', alpha=0.5, s=90, label='Outliers')
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.title('Scatter plot of news with outliers projected with t-SNE')
plt.xlabel('TSNE1')
plt.ylabel('TSNE2');
हर कैटगरी में आउटलायर कैसे दिख सकते हैं, इसके कुछ उदाहरण प्रिंट करने के लिए, dataफ़ैम की इंडेक्स वैल्यू का इस्तेमाल करें. यहां, हर कैटगरी का पहला डेटा पॉइंट प्रिंट किया जाता है. आउटलेयर या अनियमितताओं के तौर पर माने जाने वाला डेटा देखने के लिए, हर कैटगरी के अन्य पॉइंट एक्सप्लोर करें.
sci_crypt_outliers = df_outliers[df_outliers['Class Name'] == 'sci.crypt']
print(sci_crypt_outliers['Text'].iloc[0])
Re: Source of random bits on a Unix workstation Lines: 44 Nntp-Posting-Host: sandstorm >>For your application, what you can do is to encrypt the real-time clock >>value with a secret key. Well, almost.... If I only had to solve the problem for myself, and were willing to have to type in a second password whenever I logged in, it could work. However, I'm trying to create a solution that anyone can use, and which, once installed, is just as effortless to start up as the non-solution of just using xhost to control access. I've got religeous problems with storing secret keys on multiuser computers. >For a good discussion of cryptographically "good" random number >generators, check out the draft-ietf-security-randomness-00.txt >Internet Draft, available at your local friendly internet drafts >repository. Thanks for the pointer! It was good reading, and I liked the idea of using several unrelated sources with a strong mixing function. However, unless I missed something, the only source they suggested that seems available, and unguessable by an intruder, when a Unix is fresh-booted, is I/O buffers related to network traffic. I believe my solution basically uses that strategy, without requiring me to reach into the kernel. >A reasonably source of randomness is the output of a cryptographic >hash function , when fed with a large amount of >more-or-less random data. For example, running MD5 on /dev/mem is a >slow, but random enough, source of random bits; there are bound to be >128 bits of entropy in the tens of megabytes of data in >a modern workstation's memory, as a fair amount of them are system >timers, i/o buffers, etc. I heard about this solution, and it sounded good. Then I heard that folks were experiencing times of 30-60 seconds to run this, on reasonably-configured workstations. I'm not willing to add that much delay to someone's login process. My approach takes a second or two to run. I'm considering writing the be-all and end-all of solutions, that launches the MD5, and simultaneously tries to suck bits off the net, and if the net should be sitting __SO__ idle that it can't get 10K after compression before MD5 finishes, use the MD5. This way I could have guaranteed good bits, and a deterministic upper bound on login time, and still have the common case of login take only a couple of extra seconds. -Bennett
sci_elec_outliers = df_outliers[df_outliers['Class Name'] == 'sci.electronics']
print(sci_elec_outliers['Text'].iloc[0])
Re: Laser vs Bubblejet? Reply-To: Distribution: world X-Mailer: cppnews \\(Revision: 1.20 \\) Organization: null Lines: 53 Here is a different viewpoint. > FYI: The actual horizontal dot placement resoution of an HP > deskjet is 1/600th inch. The electronics and dynamics of the ink > cartridge, however, limit you to generating dots at 300 per inch. > On almost any paper, the ink wicks more than 1/300th inch anyway. > > The method of depositing and fusing toner of a laster printer > results in much less spread than ink drop technology. In practice there is little difference in quality but more care is needed with inkjet because smudges etc. can happen. > It doesn't take much investigation to see that the mechanical and > electronic complement of a laser printer is more complex than > inexpensive ink jet printers. Recall also that laser printers > offer a much higher throughput: 10 ppm for a laser versus about 1 > ppm for an ink jet printer. A cheap laser printer does not manage that sort of throughput and on top of that how long does the _first_ sheet take to print? Inkjets are faster than you say and in both cases the computer often has trouble keeping up with the printer. A sage said to me: "Do you want one copy or lots of copies?", "One", "Inkjet". > Something else to think about is the cost of consumables over the > life of the printer. A 3000 page yield toner cartridge is about > $US 75-80 at discount while HP high capacity > cartridges are about $US 22 at discount. It could be that over the > life cycle of the printer that consumables for laser printers are > less than ink jet printers. It is getting progressively closer > between the two technologies. Laser printers are usually desinged > for higher duty cycles in pages per month and longer product > replacement cycles. Paper cost is the same and both can use refills. Long term the laserprinter will need some expensive replacement parts and on top of that are the amortisation costs which favour the lowest purchase cost printer. HP inkjets understand PCL so in many cases a laserjet driver will work if the software package has no inkjet driver. There is one wild difference between the two printers: a laserprinter is a page printer whilst an inkjet is a line printer. This means that a laserprinter can rotate graphic images whilst an inkjet cannot. Few drivers actually use this facility. TC. E-mail: or
sci_med_outliers = df_outliers[df_outliers['Class Name'] == 'sci.med']
print(sci_med_outliers['Text'].iloc[0])
Re: THE BACK MACHINE - Update Organization: University of Nebraska--Lincoln Lines: 15 Distribution: na NNTP-Posting-Host: unlinfo.unl.edu I have a BACK MACHINE and have had one since January. While I have not found it to be a panacea for my back pain, I think it has helped somewhat. It MAINLY acts to stretch muscles in the back and prevent spasms associated with pain. I am taking less pain medication than I was previously. The folks at BACK TECHNOLOGIES are VERY reluctant to honor their return policy. They extended my "warranty" period rather than allow me to return the machine when, after the first month or so, I was not thrilled with it. They encouraged me to continue to use it, abeit less vigourously. Like I said, I can't say it is a cure-all, but it keeps me stretched out and I am in less pain. -- *********************************************************************** Dale M. Webb, DVM, PhD * 97% of the body is water. The Veterinary Diagnostic Center * other 3% keeps you from drowning. University of Nebraska, Lincoln *
sci_space_outliers = df_outliers[df_outliers['Class Name'] == 'sci.space']
print(sci_space_outliers['Text'].iloc[0])
MACH 25 landing site bases? Article-I.D.: aurora.1993Apr5.193829.1 Organization: University of Alaska Fairbanks Lines: 7 Nntp-Posting-Host: acad3.alaska.edu The supersonic booms hear a few months ago over I belive San Fran, heading east of what I heard, some new super speed Mach 25 aircraft?? What military based int he direction of flight are there that could handle a Mach 25aircraft on its landing decent?? Odd question?? == Michael Adams, -- I'm not high, just jacked
अगले चरण
अब आपने एम्बेड करने की सुविधा का इस्तेमाल करके, गड़बड़ी की पहचान करने वाला टूल बना लिया है! अपने टेक्स्ट वाले डेटा का इस्तेमाल करके, उन्हें एम्बेड किए गए कॉन्टेंट के तौर पर विज़ुअलाइज़ करें. साथ ही, कुछ ऐसी बाउंड चुनें जिनकी मदद से, आउटलायर का पता लगाया जा सके. विज़ुअलाइज़ेशन का चरण पूरा करने के लिए, डाइमेंशन के आधार पर उपयोगकर्ता को कम करने की कार्रवाई की जा सकती है. ध्यान दें कि t-SNE, इनपुट के ग्रुप में अच्छी तरह से काम करता है. हालांकि, इसे इकट्ठा करने में ज़्यादा समय लग सकता है या लोकल मिनिमा में अटक सकता है. अगर आपको यह समस्या आती है, तो प्रिंसिपल कॉम्पोनेंट विश्लेषण (पीसीए) तकनीक का इस्तेमाल किया जा सकता है.
एम्बेड करने की सुविधा का इस्तेमाल कैसे किया जा सकता है, इस बारे में ज़्यादा जानने के लिए ये दूसरे ट्यूटोरियल देखें: