Wyszukiwanie dokumentów za pomocą wektorów dystrybucyjnych

Zobacz na ai.google.dev Uruchom w Google Colab Wyświetl źródło na GitHubie

Przegląd

Ten przykład pokazuje, jak za pomocą interfejsu Gemini API tworzyć reprezentacje właściwościowe umożliwiające wyszukiwanie dokumentów. Użyj biblioteki klienta w języku Python, aby utworzyć osadzanie słów umożliwiające porównywanie ciągów wyszukiwania (pytań) z zawartością dokumentów.

W tym samouczku będziesz używać wektorów dystrybucyjnych do wyszukiwania dokumentów w zestawie dokumentów i zadawania pytań dotyczących samochodu Google.

Wymagania wstępne

Możesz uruchomić to krótkie wprowadzenie w Google Colab.

Aby wykonać to krótkie wprowadzenie we własnym środowisku programistycznym, upewnij się, że spełnia ono te wymagania:

  • Python 3.9 lub nowszy
  • Instalacja pakietu jupyter do uruchamiania notatnika.

Konfiguracja

Najpierw pobierz i zainstaluj bibliotekę Gemini API w języku Python.

pip install -U -q google.generativeai
import textwrap
import numpy as np
import pandas as pd

import google.generativeai as genai

# Used to securely store your API key
from google.colab import userdata

from IPython.display import Markdown

Wygeneruj klucz interfejsu API

Aby korzystać z interfejsu Gemini API, musisz najpierw uzyskać klucz interfejsu API. Jeśli nie masz jeszcze klucza, utwórz go jednym kliknięciem w Google AI Studio.

Uzyskiwanie klucza interfejsu API

W Colab dodaj klucz do menedżera obiektów tajnych w sekcji „🔑” w panelu po lewej stronie. Nadaj mu nazwę API_KEY.

Przekaż klucz interfejsu API do pakietu SDK. Można to zrobić na dwa sposoby:

  • Umieść klucz w zmiennej środowiskowej GOOGLE_API_KEY (pakiet SDK automatycznie go stamtąd zabierze).
  • Przekaż klucz do: genai.configure(api_key=...)
# Or use `os.getenv('API_KEY')` to fetch an environment variable.
API_KEY=userdata.get('API_KEY')

genai.configure(api_key=API_KEY)
for m in genai.list_models():
  if 'embedContent' in m.supported_generation_methods:
    print(m.name)
models/embedding-001
models/embedding-001

Generowanie reprezentacji właściwościowych

W tej sekcji dowiesz się, jak generować wektory dystrybucyjne dla fragmentu tekstu za pomocą reprezentacji właściwościowych z interfejsu Gemini API.

Zmiany interfejsu API we reprezentacji właściwościowych z działaniem 001 modelu

W nowym modelu reprezentacji właściwościowych (Embed_type=001) dostępny jest nowy parametr typu zadania i opcjonalny tytuł (prawidłowy tylko z parametrem load_type=RETRIEVAL_DOCUMENT).

Te nowe parametry mają zastosowanie tylko do najnowszych modeli reprezentacji właściwościowych.Typy zadań to:

Typ zadania Opis
RETRIEVAL_QUERY Określa, że podany tekst jest zapytaniem w ustawieniu wyszukiwania/pobierania.
RETRIEVAL_DOCUMENT Określa, że podany tekst jest dokumentem w ustawieniu wyszukiwania/pobierania.
SEMANTIC_SIMILARITY Określa podany tekst, który będzie używany do semantycznego podobieństwa tekstu (STS).
KLASYFIKACJA Określa, że do klasyfikacji będą używane wektory dystrybucyjne.
KLASTRY Określa, że wektory dystrybucyjne będą używane do grupowania.
title = "The next generation of AI for developers and Google Workspace"
sample_text = ("Title: The next generation of AI for developers and Google Workspace"
    "\n"
    "Full article:\n"
    "\n"
    "Gemini API & Google AI Studio: An approachable way to explore and prototype with generative AI applications")

model = 'models/embedding-001'
embedding = genai.embed_content(model=model,
                                content=sample_text,
                                task_type="retrieval_document",
                                title=title)

print(embedding)
{'embedding': [0.034585103, -0.044509504, -0.027291223, 0.0072681927, 0.061689284, 0.03362112, 0.028627988, 0.022681564, 0.04958079, 0.07274552, 0.011150464, 0.04200501, -0.029782884, -0.0041767005, 0.05074771, -0.056339227, 0.051204756, 0.04734613, -0.022025354, 0.025162602, 0.046016376, -0.003416976, -0.024010269, -0.044340927, -0.01520864, -0.013577372, -0.009918958, -0.028144406, -0.00024770075, 0.031201784, -0.072506696, 0.022366496, -0.032672316, -0.0025522006, -0.0019957912, -0.023193765, -0.020633291, -0.014031609, -0.00071676675, -0.0073200124, 0.014770645, -0.09390713, -0.017846372, 0.032825496, 0.017616265, -0.046674345, 0.03469292, 0.03386835, 0.0028274113, -0.07737739, 0.023789782, 0.025950644, 0.06952142, -0.029875675, -0.018693604, 0.007266584, -0.0067282487, 0.000802912, 0.020609016, 0.012406181, -0.018825717, 0.051171597, -0.0080359895, 0.008457639, 0.01197146, -0.080320396, -0.040698495, 0.0018266322, 0.042915005, 0.021464704, 0.022519842, 0.0059912056, 0.050887667, -0.04566639, -0.012651369, -0.14023173, -0.0274054, 0.04492792, 0.014709818, 0.037258334, -0.021294944, -0.041852854, -0.069640376, -0.030281356, -0.0070775123, 0.019886682, -0.050179508, -0.03839318, -0.014652514, 0.03370254, -0.02803748, -0.059206057, 0.055928297, -0.034912255, -0.007784368, 0.098106734, -0.06873356, -0.052850258, -0.011798939, -0.030071719, -0.026038093, 0.016752971, -0.020916667, 0.007365556, 0.017650642, 0.006677715, -0.036498126, 0.02110524, -0.05625146, 0.043038886, -0.06515849, -0.019825866, -0.010379261, -0.037537806, 0.017674655, -0.042821705, 0.014320703, 0.036735073, 0.011445211, 0.027352763, -0.0028090556, 0.009011982, 0.024146665, 0.002215841, -0.07397819, 0.008714616, -0.03377923, 0.034349587, 0.022429721, 0.052665956, -0.0021583177, -0.040462274, -0.019938014, 0.030099798, 0.009743918, 0.009111553, 0.026379738, -0.015910586, 0.010171418, 0.023996552, -0.031924065, 0.024775924, 0.014129728, 0.008913726, -0.010156162, 0.05407575, -0.080851324, 0.022005167, 0.012674272, -0.017213775, -0.009514327, 0.03276702, -0.06795425, -0.0004906647, 0.036379207, 0.034329377, -0.037122324, 0.05565231, -0.0038797501, 0.009620726, 0.050033607, 0.0084967585, 0.050638147, 0.00490447, 0.006675041, -0.04295331, -0.006490465, 0.010016808, -0.011493882, 0.023702862, 0.029825455, 0.03514081, -0.013388401, -0.05283049, 0.00019729362, -0.05095579, -0.031205554, 0.0045187837, -0.0066217924, -0.007931168, -0.0030577614, -0.016934164, 0.04188085, 0.050768845, 0.009407336, -0.02838461, 0.079967216, -0.038705315, -0.06723827, 0.015558192, -0.043977134, -0.022096274, -0.0053875325, -0.022216668, 0.013843675, 0.04506347, 0.051535256, 0.033484843, 0.044276737, -0.01299742, 0.021727907, 0.06798745, 0.038896713, 0.0023941514, 0.00815586, 0.029679826, 0.109524906, 0.012102062, -0.058510404, 0.03252702, -0.050666984, -0.006376317, 0.026164565, 0.008671174, 0.05052107, -0.027606683, 0.005126455, -0.0029112308, -0.015136989, -0.026336055, -0.031090762, 0.01717387, -0.03679281, -0.008987327, -0.0015111889, 0.0951955, -0.047756936, 0.03215895, 0.0029104433, -0.026967648, 0.015690766, 0.072443135, 0.039804243, 0.019212538, 0.08688796, -0.006074699, 0.015716698, 0.01919827, 0.030602958, 0.008902454, -0.046521842, 0.01976686, 0.051571846, 0.022742877, -0.04307271, -0.016526582, -0.03293306, 0.056195326, 0.0034229455, 0.022546848, -0.03803692, -0.051709678, 0.006613695, -0.0014020284, -0.036669895, -0.001721542, -0.08655083, -0.052215993, -0.032110028, 0.02565277, 0.04519586, -0.049954705, 0.0012014605, -0.037857044, -0.017148033, -0.026822135, 0.031737078, 0.028569039, -0.022907747, 0.024690803, -0.029206393, -0.032036074, 0.039650604, 0.021772616, -0.021436188, 0.045968816, -0.010048652, 0.030124044, 0.03935015, -0.04809066, 0.023686275, 0.02167442, 0.044297505, -0.073465124, -0.030082388, 0.017143175, -0.03342189, -0.0330694, -0.0122910105, -0.051963367, -0.058639623, -0.008972449, -0.022521269, -0.022892935, -0.035436112, 0.0034948539, -0.005295366, 0.05993406, 0.027561562, -0.010693112, 0.0009929353, -0.08425568, -0.02769792, -0.061596338, 0.036154557, -0.037945468, -0.03125497, -0.030945951, 0.04039234, 0.06636523, 0.016889103, -0.003046984, -0.011618148, 0.0011459244, 0.08574449, 0.036592126, -0.051252075, 0.013240978, -0.004678898, 0.0855428, -0.009402003, 0.028451374, -0.020148227, 0.0028894239, -0.02822095, 0.0315999, -0.057231728, 0.0004925584, -0.019411521, 0.021964703, 0.009169671, 0.01635917, -0.035817493, 0.052273333, -0.0009408905, 0.018396556, -0.041456044, 0.019532038, -0.0034153357, -0.034743972, 0.0027093922, 0.00044865624, 0.0023108325, -0.04501131, 0.05044232, -0.034571823, -0.039061558, 0.008809692, 0.068560965, 0.015274846, 0.023746625, 0.043649375, -0.028320875, -0.009765932, -0.009430268, -0.055888545, 0.047219332, 0.023080856, 0.064999744, -0.039562706, 0.0501819, 0.046483964, -0.009398194, -0.0013862611, 0.014837316, 0.045558825, 0.016926765, 0.03220044, 0.003780334, 0.040371794, 0.00057833333, -0.04805651, 0.01602842, -0.005916167, -0.0020399855, 0.036410075, -0.09505558, -0.021768136, 0.021421269, 0.024159726, -0.013026249, -0.023113504, 0.02459358, 0.01643742, -0.0104496805, 0.033115752, 0.047128692, 0.05519812, -0.013151745, 0.03202098, 0.0014973703, -0.009810199, 0.09950044, 0.03161514, 0.022533545, 0.028800217, 0.011425177, -0.06616128, 0.018490529, -0.024615118, -0.01714155, -0.036444064, -0.024078121, 6.236274e-05, -0.025733253, -0.012052791, -0.0032004463, -0.007022415, -0.07943268, -0.010401283, 0.014510383, -0.017218677, 0.056253612, -0.028017681, -0.06288073, -0.0010291388, 0.042233694, -0.017423663, -0.014384363, 0.008450004, -0.006025767, 0.00068278343, 0.043332722, -0.048530027, -0.10272868, 0.016439026, -0.0043581687, 0.014065921, 0.015250153, 0.0035983857, 0.024789328, 0.052941743, 0.0023809967, -0.0041563907, -0.02350335, -0.05152261, -0.026173577, 0.025396436, -0.020441707, 0.0052804356, 0.017074147, -0.023429962, 0.028667469, -0.056579348, -0.045674913, -0.050122924, -0.029717976, 0.011392094, 0.01918305, -0.090463236, 0.011211278, -0.058831867, -0.027594091, -0.08303421, -0.014075257, -0.013071177, 0.0050326143, 0.024727797, -0.004616583, -0.007565293, 0.0043535405, -0.05543633, -0.022187654, -0.026209656, 0.064442314, -0.0066669765, -0.002169784, -0.019930722, 4.8227314e-05, -0.0015547068, -0.0057820054, -0.08949447, -0.0115463175, -0.026195917, -0.008628893, -0.0017553791, -0.08588936, 0.008043627, -0.040522296, -0.006249298, -0.040554754, 0.021548215, 0.049422685, -0.008809529, -0.024933426, -0.040077355, 0.038274486, 0.029687686, -0.02959238, 0.0426982, 0.029072417, 0.049369767, -0.018109215, -0.041628513, -0.005594527, 0.026668772, -0.027726736, 0.037220005, 0.058132544, 0.01863369, -0.04707943, -0.0006536238, -0.012569923, 0.01520091, 0.05510794, -0.05035494, 0.036055118, -0.020710817, -0.0051193447, -0.042542584, 0.0020174137, 0.0014168078, -0.001090868, -0.034683146, 0.06309216, -0.05918888, 0.017469395, 0.025378557, 0.046790935, 0.008669848, 0.07935556, -0.016844809, -0.08596125, -0.037868172, 0.0057407417, -0.04262457, 0.0036744277, -0.04798243, 0.010448024, 0.005311227, -0.025689157, 0.051566023, -0.053452246, -0.033347856, -0.014070289, -0.001457106, 0.056622982, -0.037253298, -0.0010763579, 0.025846632, -0.017852046, -0.035092466, 0.0293208, 0.035001587, -0.002458465, -0.0032884434, -0.011247537, -0.03308368, 0.027546775, -0.0197189, -0.019373588, 0.012695445, -0.00846602, 0.0006254506, 0.022446852, -0.021224227, -0.016343568, -0.008488644, 0.009065775, -0.0038449552, -0.036945608, 0.035750583, 0.0021798566, 0.007781292, 0.07929656, -0.017595762, -0.020934578, -0.03354823, 0.04495828, -0.008365722, -0.040300835, 0.0006642716, 0.0568309, 0.016416628, 0.0722137, -0.01774583, -0.0492021, -0.0020490142, -0.049469862, 0.043543257, 0.04398881, 0.025031362, -0.0063477345, 0.062346347, -0.040481493, -0.02257938, 0.009280532, 0.010731656, 0.02230327, 0.002849086, -0.05473455, 0.047677275, -0.02363733, 0.029837264, -0.020835804, -0.017142115, 0.006764067, -0.01684698, 0.021653073, 0.040238675, -0.018611673, -0.04561582, 0.038430944, -0.02677326, 0.007663415, 0.06948015, -0.0012032362, 0.008699309, 0.011357286, 0.021917833, 0.00018160013, -0.076829135, 0.0023802964, -0.023293033, -0.03534673, -0.042327877, -0.0210994, 0.042625647, -0.014360755, -0.0066886684, 0.03561479, 0.047778953, 0.037118394, 0.041420408, 0.052272875, 0.039208084, -0.033506226, -0.00651392, 0.062439967, 0.03669325, 0.042872086, 0.066822834, -0.0068043126, -0.021161819, -0.050757803, 0.005068388, -0.0027463334, 0.013415453, -0.033819556, -0.046399325, -0.03287996, -0.019854786, -0.0070042396, -0.00042829785, -0.036087025, -0.00650163, 0.0008774728, -0.10458266, -0.061043933, 0.016721264, 0.0002953045, -0.0053018867, 0.012741255, 0.0050292304, 0.024298942, 0.0033208653, -0.0629338, -0.0005545099, 0.04004244, -0.03548021, -0.02479493, 0.035712432, -0.017079322, -0.030503469, 0.0019789268, -0.028768733, -0.054890547, -0.08133776, -0.03006806, -0.016685534, -0.073403284, 0.05233739, 0.033545494, 0.0035976092, 0.040786255, 0.056786384, 0.013151219, 0.042795595, 0.009594162, 0.00945792, 0.024018744, -0.045365516, -0.050492898, 0.038503986, 0.012790262, 0.0142914, 0.014998696, 0.0071202153, -0.0038871064, 0.010770397, 0.016789515, -0.041323792, 0.010311674, -0.009053558, 0.034749016, 0.005213924, -0.041184388, -0.0033388685, 0.04279652, 0.04068113, -0.024129236, -0.0059263078, 0.027970677, -0.024706231, 0.02846046, -0.0011169978, -0.059880134, 0.02713591, -0.0027713599, 0.040187914, 0.035978075, -0.06281134, -0.08345513, -0.006073032, -0.02095529, -0.018988023, -0.035680003, 0.04972727, -0.009011115, 0.054317664, 0.005172075, 0.031131523, -0.00069823023, 0.0108121475, -0.06091403, 0.049459387, -0.007036548, -0.014955144, -0.02104843, 0.035405546, 0.043375615, -0.042294793, -0.025417345, -0.015245514, 0.023398506, 0.002263163, -0.0071430253, 0.043531902, -0.03357511, -0.09097121, -0.04729407, -0.013593756, 0.023449646, 0.039015424, 0.027113337, -0.05169247, -0.016909705, -0.0057588373, -0.009955609, -0.05562937, -0.052671663, 0.003173363, -0.0022836009, 0.036742315, 0.047324646, -0.033285677, 0.012819869, -0.01939692, -0.0047737034, -0.011794656, -0.045633573, -0.0013346534, 0.016130142, -0.066292875, 0.029637614, 0.057662483, -0.035122138, 0.068166904]}

Tworzenie bazy danych wektorów dystrybucyjnych

Oto 3 przykładowe teksty, których możesz użyć do utworzenia bazy danych reprezentacji właściwościowych. Do utworzenia reprezentacji właściwościowych każdego dokumentu użyjesz interfejsu API Gemini. Przekształć je w ramkę danych, aby uzyskać lepszą wizualizację.

DOCUMENT1 = {
    "title": "Operating the Climate Control System",
    "content": "Your Googlecar has a climate control system that allows you to adjust the temperature and airflow in the car. To operate the climate control system, use the buttons and knobs located on the center console.  Temperature: The temperature knob controls the temperature inside the car. Turn the knob clockwise to increase the temperature or counterclockwise to decrease the temperature. Airflow: The airflow knob controls the amount of airflow inside the car. Turn the knob clockwise to increase the airflow or counterclockwise to decrease the airflow. Fan speed: The fan speed knob controls the speed of the fan. Turn the knob clockwise to increase the fan speed or counterclockwise to decrease the fan speed. Mode: The mode button allows you to select the desired mode. The available modes are: Auto: The car will automatically adjust the temperature and airflow to maintain a comfortable level. Cool: The car will blow cool air into the car. Heat: The car will blow warm air into the car. Defrost: The car will blow warm air onto the windshield to defrost it."}
DOCUMENT2 = {
    "title": "Touchscreen",
    "content": "Your Googlecar has a large touchscreen display that provides access to a variety of features, including navigation, entertainment, and climate control. To use the touchscreen display, simply touch the desired icon.  For example, you can touch the \"Navigation\" icon to get directions to your destination or touch the \"Music\" icon to play your favorite songs."}
DOCUMENT3 = {
    "title": "Shifting Gears",
    "content": "Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions."}

documents = [DOCUMENT1, DOCUMENT2, DOCUMENT3]

Uporządkuj zawartość słownika w ramkę danych, aby ułatwić wizualizację.

df = pd.DataFrame(documents)
df.columns = ['Title', 'Text']
df

Pobierz wektory dystrybucyjne dla każdego z tych treści tekstu. Dodaj te informacje do ramki danych.

# Get the embeddings of each text and add to an embeddings column in the dataframe
def embed_fn(title, text):
  return genai.embed_content(model=model,
                             content=text,
                             task_type="retrieval_document",
                             title=title)["embedding"]

df['Embeddings'] = df.apply(lambda row: embed_fn(row['Title'], row['Text']), axis=1)
df

Wyszukiwanie dokumentów przy użyciu sesji pytań i odpowiedzi

Po wygenerowaniu wektorów dystrybucyjnych utworzymy system pytań i odpowiedzi, który umożliwi przeszukiwanie tych dokumentów. Zadasz pytanie na temat dostrajania hiperparametrów, utworzysz osadzone pytanie i porównajmy wyniki ze zbiorem reprezentacji właściwościowych w ramce DataFrame.

Umieszczanie pytania będzie wektorem (lista wartości zmiennoprzecinkowych), który zostanie porównany z wektorem dokumentów korzystających z iloczynu skalarnego. Ten wektor zwrócony przez interfejs API jest już znormalizowany. Iloczyn skalarny oznacza podobieństwo kierunku między 2 wektorami.

Iloczyn skalarny może mieścić się w zakresie od -1 do 1 włącznie. Jeśli iloczyn skalarny między 2 wektorami wynosi 1, oznacza to, że wektory mają ten sam kierunek. Jeśli iloczyn skalarny wynosi 0, wektory są ortogonalne lub niepowiązane ze sobą. Jeśli iloczyn skalarny wynosi -1, wektory mają przeciwny kierunek i nie są do siebie podobne.

Uwaga: w nowym modelu reprezentacji właściwościowych (embedding-001) jako typ zadania określ typ zadania jako QUERY w przypadku zapytania użytkownika i DOCUMENT podczas umieszczania tekstu dokumentu.

Typ zadania Opis
RETRIEVAL_QUERY Określa, że podany tekst jest zapytaniem w ustawieniu wyszukiwania/pobierania.
RETRIEVAL_DOCUMENT Określa, że podany tekst jest dokumentem w ustawieniu wyszukiwania/pobierania.
query = "How do you shift gears in the Google car?"
model = 'models/embedding-001'

request = genai.embed_content(model=model,
                              content=query,
                              task_type="retrieval_query")

Użyj funkcji find_best_passage do obliczenia iloczynów skalarnych, a następnie posortuj ramkę danych od największej do najmniejszej wartości iloczynu skalarnego, aby pobrać odpowiedni fragment z bazy danych.

def find_best_passage(query, dataframe):
  """
  Compute the distances between the query and each document in the dataframe
  using the dot product.
  """
  query_embedding = genai.embed_content(model=model,
                                        content=query,
                                        task_type="retrieval_query")
  dot_products = np.dot(np.stack(dataframe['Embeddings']), query_embedding["embedding"])
  idx = np.argmax(dot_products)
  return dataframe.iloc[idx]['Text'] # Return text from index with max value

Wyświetl najbardziej odpowiedni dokument z bazy danych:

passage = find_best_passage(query, df)
passage
'Shifting Gears  Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions.'

Pytania i odpowiedzi

Spróbujmy użyć interfejsu API do generowania tekstu, aby utworzyć system pytań i odpowiedzi. Wprowadź poniżej własne dane niestandardowe, aby utworzyć proste pytanie i przykład odpowiedzi. Iloczyn skalarny będzie nadal używany jako wskaźnik podobieństwa.

def make_prompt(query, relevant_passage):
  escaped = relevant_passage.replace("'", "").replace('"', "").replace("\n", " ")
  prompt = textwrap.dedent("""You are a helpful and informative bot that answers questions using text from the reference passage included below. \
  Be sure to respond in a complete sentence, being comprehensive, including all relevant background information. \
  However, you are talking to a non-technical audience, so be sure to break down complicated concepts and \
  strike a friendly and converstional tone. \
  If the passage is irrelevant to the answer, you may ignore it.
  QUESTION: '{query}'
  PASSAGE: '{relevant_passage}'

    ANSWER:
  """).format(query=query, relevant_passage=escaped)

  return prompt
prompt = make_prompt(query, passage)
print(prompt)
You are a helpful and informative bot that answers questions using text from the reference passage included below.   Be sure to respond in a complete sentence, being comprehensive, including all relevant background information.   However, you are talking to a non-technical audience, so be sure to break down complicated concepts and   strike a friendly and converstional tone.   If the passage is irrelevant to the answer, you may ignore it.
  QUESTION: 'How do you shift gears in the Google car?'
  PASSAGE: 'Shifting Gears  Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions.'

    ANSWER:

Wybierz jeden z modeli generowania treści Gemini, aby znaleźć odpowiedź na swoje zapytanie.

for m in genai.list_models():
  if 'generateContent' in m.supported_generation_methods:
    print(m.name)
models/gemini-pro
models/gemini-ultra
model = genai.GenerativeModel('gemini-1.5-pro-latest')
answer = model.generate_content(prompt)
Markdown(answer.text)

Przesłany fragment nie zawiera informacji o zmienianiu biegów w samochodzie Google, dlatego nie mogę odpowiedzieć na Twoje pytanie z tego źródła.

Dalsze kroki

Aby dowiedzieć się więcej o korzystaniu z reprezentacji właściwościowych, zobacz te samouczki: