חיפוש מסמכים עם הטמעות

להצגה ב-ai.google.dev כדאי לנסות notebook של Colab הצגת notebook ב-GitHub

סקירה כללית

הדוגמה הזו ממחישה איך להשתמש ב-Gemini API כדי ליצור הטמעות שיאפשרו לבצע חיפוש מסמכים. תשתמשו בספריית הלקוח של Python כדי ליצור הטמעה של מילים שמאפשרת להשוות בין מחרוזות חיפוש או שאלות לבין תוכן של מסמכים.

במדריך הזה תשתמשו בהטמעות כדי לבצע חיפוש מסמכים מעל קבוצת מסמכים כדי לשאול שאלות שקשורות ל-Google Car.

דרישות מוקדמות

אפשר להפעיל את המדריך למתחילים הזה ב-Google Colab.

כדי להשלים את המדריך למתחילים הזה בסביבת הפיתוח שלכם, צריך לוודא שהסביבה עומדת בדרישות הבאות:

  • Python 3.9 ואילך
  • התקנה של jupyter כדי להריץ את ה-notebook.

הגדרה

קודם כול, מורידים ומתקינים את ספריית Python של Gemini API.

pip install -U -q google.generativeai
import textwrap
import numpy as np
import pandas as pd

import google.generativeai as genai

# Used to securely store your API key
from google.colab import userdata

from IPython.display import Markdown

קבלת מפתח API

כדי להשתמש ב-Gemini API, קודם צריך לקבל מפתח API. אם עדיין אין לכם מפתח, אתם יכולים ליצור מפתח בלחיצה אחת ב-Google AI Studio.

קבלת מפתח API

ב-Colab, מוסיפים את המפתח למנהל הסודות מתחת לכיתוב '🔑' בחלונית הימנית. נותנים למכשיר את השם API_KEY.

אחרי שמקבלים את מפתח ה-API, מעבירים אותו ל-SDK. תוכל לעשות זאת בשתי דרכים:

  • מכניסים את המפתח למשתנה הסביבה GOOGLE_API_KEY (ערכת ה-SDK תאסוף אותו משם באופן אוטומטי).
  • צריך להעביר את המפתח אל genai.configure(api_key=...)
genai.configure(api_key=GOOGLE_API_KEY)
for m in genai.list_models():
  if 'embedContent' in m.supported_generation_methods:
    print(m.name)
models/embedding-001
models/embedding-001

יצירת הטמעה

בקטע הזה נסביר איך ליצור הטמעות לקטע טקסט באמצעות הטמעות מ-Gemini API.

שינויים ב-API של הטמעות עם מודל הטמעת מודל-001

למודל ההטמעות החדש, embed-001, יש פרמטר חדש של סוג משימה והכותרת האופציונלית (רלוונטי רק ל-task_type=RETRIEVAL_DOCUMENT).

הפרמטרים החדשים האלה רלוונטיים רק למודלים החדשים ביותר של הטמעות.סוגי המשימות הם:

סוג המשימה תיאור
RETRIEVAL_QUERY מציינת שהטקסט הנתון הוא שאילתה בהגדרת חיפוש/אחזור.
RETRIEVAL_DOCUMENT מציינת שהטקסט הנתון הוא מסמך בהגדרת חיפוש/אחזור.
SEMANTIC_SIMILARITY מציינת שהטקסט הנתון ישמש לדמיון סמנטי (STS).
סיווג מציינת שההטמעות ישמשו לסיווג.
אשכול מציינת שההטמעות ישמשו לקיבוץ לאשכולות.
title = "The next generation of AI for developers and Google Workspace"
sample_text = ("Title: The next generation of AI for developers and Google Workspace"
    "\n"
    "Full article:\n"
    "\n"
    "Gemini API & Google AI Studio: An approachable way to explore and prototype with generative AI applications")

model = 'models/embedding-001'
embedding = genai.embed_content(model=model,
                                content=sample_text,
                                task_type="retrieval_document",
                                title=title)

print(embedding)
{'embedding': [0.034585103, -0.044509504, -0.027291223, 0.0072681927, 0.061689284, 0.03362112, 0.028627988, 0.022681564, 0.04958079, 0.07274552, 0.011150464, 0.04200501, -0.029782884, -0.0041767005, 0.05074771, -0.056339227, 0.051204756, 0.04734613, -0.022025354, 0.025162602, 0.046016376, -0.003416976, -0.024010269, -0.044340927, -0.01520864, -0.013577372, -0.009918958, -0.028144406, -0.00024770075, 0.031201784, -0.072506696, 0.022366496, -0.032672316, -0.0025522006, -0.0019957912, -0.023193765, -0.020633291, -0.014031609, -0.00071676675, -0.0073200124, 0.014770645, -0.09390713, -0.017846372, 0.032825496, 0.017616265, -0.046674345, 0.03469292, 0.03386835, 0.0028274113, -0.07737739, 0.023789782, 0.025950644, 0.06952142, -0.029875675, -0.018693604, 0.007266584, -0.0067282487, 0.000802912, 0.020609016, 0.012406181, -0.018825717, 0.051171597, -0.0080359895, 0.008457639, 0.01197146, -0.080320396, -0.040698495, 0.0018266322, 0.042915005, 0.021464704, 0.022519842, 0.0059912056, 0.050887667, -0.04566639, -0.012651369, -0.14023173, -0.0274054, 0.04492792, 0.014709818, 0.037258334, -0.021294944, -0.041852854, -0.069640376, -0.030281356, -0.0070775123, 0.019886682, -0.050179508, -0.03839318, -0.014652514, 0.03370254, -0.02803748, -0.059206057, 0.055928297, -0.034912255, -0.007784368, 0.098106734, -0.06873356, -0.052850258, -0.011798939, -0.030071719, -0.026038093, 0.016752971, -0.020916667, 0.007365556, 0.017650642, 0.006677715, -0.036498126, 0.02110524, -0.05625146, 0.043038886, -0.06515849, -0.019825866, -0.010379261, -0.037537806, 0.017674655, -0.042821705, 0.014320703, 0.036735073, 0.011445211, 0.027352763, -0.0028090556, 0.009011982, 0.024146665, 0.002215841, -0.07397819, 0.008714616, -0.03377923, 0.034349587, 0.022429721, 0.052665956, -0.0021583177, -0.040462274, -0.019938014, 0.030099798, 0.009743918, 0.009111553, 0.026379738, -0.015910586, 0.010171418, 0.023996552, -0.031924065, 0.024775924, 0.014129728, 0.008913726, -0.010156162, 0.05407575, -0.080851324, 0.022005167, 0.012674272, -0.017213775, -0.009514327, 0.03276702, -0.06795425, -0.0004906647, 0.036379207, 0.034329377, -0.037122324, 0.05565231, -0.0038797501, 0.009620726, 0.050033607, 0.0084967585, 0.050638147, 0.00490447, 0.006675041, -0.04295331, -0.006490465, 0.010016808, -0.011493882, 0.023702862, 0.029825455, 0.03514081, -0.013388401, -0.05283049, 0.00019729362, -0.05095579, -0.031205554, 0.0045187837, -0.0066217924, -0.007931168, -0.0030577614, -0.016934164, 0.04188085, 0.050768845, 0.009407336, -0.02838461, 0.079967216, -0.038705315, -0.06723827, 0.015558192, -0.043977134, -0.022096274, -0.0053875325, -0.022216668, 0.013843675, 0.04506347, 0.051535256, 0.033484843, 0.044276737, -0.01299742, 0.021727907, 0.06798745, 0.038896713, 0.0023941514, 0.00815586, 0.029679826, 0.109524906, 0.012102062, -0.058510404, 0.03252702, -0.050666984, -0.006376317, 0.026164565, 0.008671174, 0.05052107, -0.027606683, 0.005126455, -0.0029112308, -0.015136989, -0.026336055, -0.031090762, 0.01717387, -0.03679281, -0.008987327, -0.0015111889, 0.0951955, -0.047756936, 0.03215895, 0.0029104433, -0.026967648, 0.015690766, 0.072443135, 0.039804243, 0.019212538, 0.08688796, -0.006074699, 0.015716698, 0.01919827, 0.030602958, 0.008902454, -0.046521842, 0.01976686, 0.051571846, 0.022742877, -0.04307271, -0.016526582, -0.03293306, 0.056195326, 0.0034229455, 0.022546848, -0.03803692, -0.051709678, 0.006613695, -0.0014020284, -0.036669895, -0.001721542, -0.08655083, -0.052215993, -0.032110028, 0.02565277, 0.04519586, -0.049954705, 0.0012014605, -0.037857044, -0.017148033, -0.026822135, 0.031737078, 0.028569039, -0.022907747, 0.024690803, -0.029206393, -0.032036074, 0.039650604, 0.021772616, -0.021436188, 0.045968816, -0.010048652, 0.030124044, 0.03935015, -0.04809066, 0.023686275, 0.02167442, 0.044297505, -0.073465124, -0.030082388, 0.017143175, -0.03342189, -0.0330694, -0.0122910105, -0.051963367, -0.058639623, -0.008972449, -0.022521269, -0.022892935, -0.035436112, 0.0034948539, -0.005295366, 0.05993406, 0.027561562, -0.010693112, 0.0009929353, -0.08425568, -0.02769792, -0.061596338, 0.036154557, -0.037945468, -0.03125497, -0.030945951, 0.04039234, 0.06636523, 0.016889103, -0.003046984, -0.011618148, 0.0011459244, 0.08574449, 0.036592126, -0.051252075, 0.013240978, -0.004678898, 0.0855428, -0.009402003, 0.028451374, -0.020148227, 0.0028894239, -0.02822095, 0.0315999, -0.057231728, 0.0004925584, -0.019411521, 0.021964703, 0.009169671, 0.01635917, -0.035817493, 0.052273333, -0.0009408905, 0.018396556, -0.041456044, 0.019532038, -0.0034153357, -0.034743972, 0.0027093922, 0.00044865624, 0.0023108325, -0.04501131, 0.05044232, -0.034571823, -0.039061558, 0.008809692, 0.068560965, 0.015274846, 0.023746625, 0.043649375, -0.028320875, -0.009765932, -0.009430268, -0.055888545, 0.047219332, 0.023080856, 0.064999744, -0.039562706, 0.0501819, 0.046483964, -0.009398194, -0.0013862611, 0.014837316, 0.045558825, 0.016926765, 0.03220044, 0.003780334, 0.040371794, 0.00057833333, -0.04805651, 0.01602842, -0.005916167, -0.0020399855, 0.036410075, -0.09505558, -0.021768136, 0.021421269, 0.024159726, -0.013026249, -0.023113504, 0.02459358, 0.01643742, -0.0104496805, 0.033115752, 0.047128692, 0.05519812, -0.013151745, 0.03202098, 0.0014973703, -0.009810199, 0.09950044, 0.03161514, 0.022533545, 0.028800217, 0.011425177, -0.06616128, 0.018490529, -0.024615118, -0.01714155, -0.036444064, -0.024078121, 6.236274e-05, -0.025733253, -0.012052791, -0.0032004463, -0.007022415, -0.07943268, -0.010401283, 0.014510383, -0.017218677, 0.056253612, -0.028017681, -0.06288073, -0.0010291388, 0.042233694, -0.017423663, -0.014384363, 0.008450004, -0.006025767, 0.00068278343, 0.043332722, -0.048530027, -0.10272868, 0.016439026, -0.0043581687, 0.014065921, 0.015250153, 0.0035983857, 0.024789328, 0.052941743, 0.0023809967, -0.0041563907, -0.02350335, -0.05152261, -0.026173577, 0.025396436, -0.020441707, 0.0052804356, 0.017074147, -0.023429962, 0.028667469, -0.056579348, -0.045674913, -0.050122924, -0.029717976, 0.011392094, 0.01918305, -0.090463236, 0.011211278, -0.058831867, -0.027594091, -0.08303421, -0.014075257, -0.013071177, 0.0050326143, 0.024727797, -0.004616583, -0.007565293, 0.0043535405, -0.05543633, -0.022187654, -0.026209656, 0.064442314, -0.0066669765, -0.002169784, -0.019930722, 4.8227314e-05, -0.0015547068, -0.0057820054, -0.08949447, -0.0115463175, -0.026195917, -0.008628893, -0.0017553791, -0.08588936, 0.008043627, -0.040522296, -0.006249298, -0.040554754, 0.021548215, 0.049422685, -0.008809529, -0.024933426, -0.040077355, 0.038274486, 0.029687686, -0.02959238, 0.0426982, 0.029072417, 0.049369767, -0.018109215, -0.041628513, -0.005594527, 0.026668772, -0.027726736, 0.037220005, 0.058132544, 0.01863369, -0.04707943, -0.0006536238, -0.012569923, 0.01520091, 0.05510794, -0.05035494, 0.036055118, -0.020710817, -0.0051193447, -0.042542584, 0.0020174137, 0.0014168078, -0.001090868, -0.034683146, 0.06309216, -0.05918888, 0.017469395, 0.025378557, 0.046790935, 0.008669848, 0.07935556, -0.016844809, -0.08596125, -0.037868172, 0.0057407417, -0.04262457, 0.0036744277, -0.04798243, 0.010448024, 0.005311227, -0.025689157, 0.051566023, -0.053452246, -0.033347856, -0.014070289, -0.001457106, 0.056622982, -0.037253298, -0.0010763579, 0.025846632, -0.017852046, -0.035092466, 0.0293208, 0.035001587, -0.002458465, -0.0032884434, -0.011247537, -0.03308368, 0.027546775, -0.0197189, -0.019373588, 0.012695445, -0.00846602, 0.0006254506, 0.022446852, -0.021224227, -0.016343568, -0.008488644, 0.009065775, -0.0038449552, -0.036945608, 0.035750583, 0.0021798566, 0.007781292, 0.07929656, -0.017595762, -0.020934578, -0.03354823, 0.04495828, -0.008365722, -0.040300835, 0.0006642716, 0.0568309, 0.016416628, 0.0722137, -0.01774583, -0.0492021, -0.0020490142, -0.049469862, 0.043543257, 0.04398881, 0.025031362, -0.0063477345, 0.062346347, -0.040481493, -0.02257938, 0.009280532, 0.010731656, 0.02230327, 0.002849086, -0.05473455, 0.047677275, -0.02363733, 0.029837264, -0.020835804, -0.017142115, 0.006764067, -0.01684698, 0.021653073, 0.040238675, -0.018611673, -0.04561582, 0.038430944, -0.02677326, 0.007663415, 0.06948015, -0.0012032362, 0.008699309, 0.011357286, 0.021917833, 0.00018160013, -0.076829135, 0.0023802964, -0.023293033, -0.03534673, -0.042327877, -0.0210994, 0.042625647, -0.014360755, -0.0066886684, 0.03561479, 0.047778953, 0.037118394, 0.041420408, 0.052272875, 0.039208084, -0.033506226, -0.00651392, 0.062439967, 0.03669325, 0.042872086, 0.066822834, -0.0068043126, -0.021161819, -0.050757803, 0.005068388, -0.0027463334, 0.013415453, -0.033819556, -0.046399325, -0.03287996, -0.019854786, -0.0070042396, -0.00042829785, -0.036087025, -0.00650163, 0.0008774728, -0.10458266, -0.061043933, 0.016721264, 0.0002953045, -0.0053018867, 0.012741255, 0.0050292304, 0.024298942, 0.0033208653, -0.0629338, -0.0005545099, 0.04004244, -0.03548021, -0.02479493, 0.035712432, -0.017079322, -0.030503469, 0.0019789268, -0.028768733, -0.054890547, -0.08133776, -0.03006806, -0.016685534, -0.073403284, 0.05233739, 0.033545494, 0.0035976092, 0.040786255, 0.056786384, 0.013151219, 0.042795595, 0.009594162, 0.00945792, 0.024018744, -0.045365516, -0.050492898, 0.038503986, 0.012790262, 0.0142914, 0.014998696, 0.0071202153, -0.0038871064, 0.010770397, 0.016789515, -0.041323792, 0.010311674, -0.009053558, 0.034749016, 0.005213924, -0.041184388, -0.0033388685, 0.04279652, 0.04068113, -0.024129236, -0.0059263078, 0.027970677, -0.024706231, 0.02846046, -0.0011169978, -0.059880134, 0.02713591, -0.0027713599, 0.040187914, 0.035978075, -0.06281134, -0.08345513, -0.006073032, -0.02095529, -0.018988023, -0.035680003, 0.04972727, -0.009011115, 0.054317664, 0.005172075, 0.031131523, -0.00069823023, 0.0108121475, -0.06091403, 0.049459387, -0.007036548, -0.014955144, -0.02104843, 0.035405546, 0.043375615, -0.042294793, -0.025417345, -0.015245514, 0.023398506, 0.002263163, -0.0071430253, 0.043531902, -0.03357511, -0.09097121, -0.04729407, -0.013593756, 0.023449646, 0.039015424, 0.027113337, -0.05169247, -0.016909705, -0.0057588373, -0.009955609, -0.05562937, -0.052671663, 0.003173363, -0.0022836009, 0.036742315, 0.047324646, -0.033285677, 0.012819869, -0.01939692, -0.0047737034, -0.011794656, -0.045633573, -0.0013346534, 0.016130142, -0.066292875, 0.029637614, 0.057662483, -0.035122138, 0.068166904]}

פיתוח מסד נתונים של הטמעות

הנה שלושה טקסטים לדוגמה שישמשו לבניית מסד הנתונים של ההטמעות. כדי ליצור הטמעות של כל אחד מהמסמכים, משתמשים ב-Gemini API. אתם יכולים להפוך אותן למסגרת נתונים כדי לקבל המחשה טובה יותר.

DOCUMENT1 = {
    "title": "Operating the Climate Control System",
    "content": "Your Googlecar has a climate control system that allows you to adjust the temperature and airflow in the car. To operate the climate control system, use the buttons and knobs located on the center console.  Temperature: The temperature knob controls the temperature inside the car. Turn the knob clockwise to increase the temperature or counterclockwise to decrease the temperature. Airflow: The airflow knob controls the amount of airflow inside the car. Turn the knob clockwise to increase the airflow or counterclockwise to decrease the airflow. Fan speed: The fan speed knob controls the speed of the fan. Turn the knob clockwise to increase the fan speed or counterclockwise to decrease the fan speed. Mode: The mode button allows you to select the desired mode. The available modes are: Auto: The car will automatically adjust the temperature and airflow to maintain a comfortable level. Cool: The car will blow cool air into the car. Heat: The car will blow warm air into the car. Defrost: The car will blow warm air onto the windshield to defrost it."}
DOCUMENT2 = {
    "title": "Touchscreen",
    "content": "Your Googlecar has a large touchscreen display that provides access to a variety of features, including navigation, entertainment, and climate control. To use the touchscreen display, simply touch the desired icon.  For example, you can touch the \"Navigation\" icon to get directions to your destination or touch the \"Music\" icon to play your favorite songs."}
DOCUMENT3 = {
    "title": "Shifting Gears",
    "content": "Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions."}

documents = [DOCUMENT1, DOCUMENT2, DOCUMENT3]

לארגן את תוכן המילון במסגרת נתונים כדי לשפר את התצוגה החזותית.

df = pd.DataFrame(documents)
df.columns = ['Title', 'Text']
df

מקבלים את ההטמעות לכל אחד מגופי הטקסט האלה. מוסיפים את המידע הזה ל-dataframe.

# Get the embeddings of each text and add to an embeddings column in the dataframe
def embed_fn(title, text):
  return genai.embed_content(model=model,
                             content=text,
                             task_type="retrieval_document",
                             title=title)["embedding"]

df['Embeddings'] = df.apply(lambda row: embed_fn(row['Title'], row['Text']), axis=1)
df

חיפוש מסמכים באמצעות שאלות ותשובות

עכשיו, לאחר יצירת ההטמעות, בואו ניצור מערכת של שאלות ותשובות לחיפוש במסמכים האלה. צריך לשאול שאלה לגבי כוונון היפר-פרמטרים, ליצור הטמעה של השאלה ולהשוות אותה לאוסף ההטמעות בנתונים ב-Dataframe.

הטמעה של השאלה תהיה וקטור (רשימה של ערכים צפים), שיושווה לווקטור של המסמכים באמצעות תוצר הנקודה. הווקטור הזה שמוחזר מה-API כבר מנורמל. מכפלת הנקודות מייצגת את הדמיון בכיוון בין שני וקטורים.

הערכים של מכפלת הנקודות יכולים לנוע בין 1- ל-1, כולל. אם מכפלת הנקודות בין שני וקטורים היא 1, אז הווקטורים נמצאים באותו כיוון. אם ערך המכפלה של הנקודה הוא 0, הווקטורים האלה הם אורתוגונליים או לא קשורים זה לזה. לבסוף, אם מכפלת הנקודות הוא -1, אז הווקטורים מצביעים בכיוון הנגדי והם לא דומים זה לזה.

הערה: במודל ההטמעות החדש (embedding-001), צריך לציין את סוג המשימה כך: QUERY לשאילתת משתמש ו-DOCUMENT כשמטמיעים טקסט של מסמך.

סוג המשימה תיאור
RETRIEVAL_QUERY מציינת שהטקסט הנתון הוא שאילתה בהגדרת חיפוש/אחזור.
RETRIEVAL_DOCUMENT מציינת שהטקסט הנתון הוא מסמך בהגדרת חיפוש/אחזור.
query = "How do you shift gears in the Google car?"
model = 'models/embedding-001'

request = genai.embed_content(model=model,
                              content=query,
                              task_type="retrieval_query")

אפשר להשתמש בפונקציה find_best_passage כדי לחשב את מספר המכפלות. לאחר מכן אפשר למיין את מסגרת הנתונים מערך המוצר הגדול ביותר לקטן ביותר כדי לאחזר את הקטע הרלוונטי ממסד הנתונים.

def find_best_passage(query, dataframe):
  """
  Compute the distances between the query and each document in the dataframe
  using the dot product.
  """
  query_embedding = genai.embed_content(model=model,
                                        content=query,
                                        task_type="retrieval_query")
  dot_products = np.dot(np.stack(dataframe['Embeddings']), query_embedding["embedding"])
  idx = np.argmax(dot_products)
  return dataframe.iloc[idx]['Text'] # Return text from index with max value

לצפות במסמך הרלוונטי ביותר ממסד הנתונים:

passage = find_best_passage(query, df)
passage
'Shifting Gears  Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions.'

אפליקציה למענה לשאלות

בואו ננסה להשתמש בממשק ה-API ליצירת טקסט כדי ליצור שאלות ותשובות מערכת. כדי ליצור שאלה פשוטה ודוגמה לתשובה, מזינים למטה נתונים מותאמים אישית. המוצר עדיין ישמש כמדד של דמיון.

def make_prompt(query, relevant_passage):
  escaped = relevant_passage.replace("'", "").replace('"', "").replace("\n", " ")
  prompt = textwrap.dedent("""You are a helpful and informative bot that answers questions using text from the reference passage included below. \
  Be sure to respond in a complete sentence, being comprehensive, including all relevant background information. \
  However, you are talking to a non-technical audience, so be sure to break down complicated concepts and \
  strike a friendly and converstional tone. \
  If the passage is irrelevant to the answer, you may ignore it.
  QUESTION: '{query}'
  PASSAGE: '{relevant_passage}'

    ANSWER:
  """).format(query=query, relevant_passage=escaped)

  return prompt
prompt = make_prompt(query, passage)
print(prompt)
You are a helpful and informative bot that answers questions using text from the reference passage included below.   Be sure to respond in a complete sentence, being comprehensive, including all relevant background information.   However, you are talking to a non-technical audience, so be sure to break down complicated concepts and   strike a friendly and converstional tone.   If the passage is irrelevant to the answer, you may ignore it.
  QUESTION: 'How do you shift gears in the Google car?'
  PASSAGE: 'Shifting Gears  Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions.'

    ANSWER:

צריך לבחור באחד מהמודלים ליצירת תוכן ב-Gemini כדי למצוא את התשובה לשאילתה שלך.

for m in genai.list_models():
  if 'generateContent' in m.supported_generation_methods:
    print(m.name)
models/gemini-pro
models/gemini-ultra
model = genai.GenerativeModel('gemini-1.5-pro-latest')
answer = model.generate_content(prompt)
Markdown(answer.text)

הקטע המצורף לא מכיל מידע לגבי העברת הילוכים ברכב של Google, כך שאין לי אפשרות לענות על השאלה שלך מהמקור הזה.

השלבים הבאים

למידע נוסף על שימוש בהטמעות, כדאי לעיין במדריכים הבאים: