Questo tutorial mostra come accedere all'API Gemini direttamente dal tuo App per Android che utilizza l'SDK client dell'IA di Google per Android. Puoi utilizzare questo SDK client se non vuoi lavorare direttamente con le API REST o con il codice lato server (come Python) per accedere ai modelli Gemini nella tua app per Android.
In questo tutorial imparerai a:
- Configurare il progetto, inclusa la chiave API
- Generare testo da input di solo testo
- Genera testo da input di testo e immagine (multimodale)
- Creare conversazioni in più passaggi (chat)
- Usa la modalità flusso per interazioni più rapide
Inoltre, questo tutorial contiene sezioni sui casi d'uso avanzati (come token di conteggio) nonché opzioni per il controllo della generazione di contenuti.
Valuta la possibilità di accedere a Gemini on-device
L'SDK client per Android descritto in questo tutorial ti consente di accedere al Modelli Gemini Pro che vengono eseguiti sui server di Google. Per i casi d'uso che prevedono elaborando dati sensibili, disponibilità offline o risparmi sui costi per utilizzate di frequente, potresti prendere in considerazione l'accesso a Gemini Nano che viene eseguito sul dispositivo. Per ulteriori dettagli, consulta Tutorial per Android (sul dispositivo).
Prerequisiti
Questo tutorial presuppone che tu abbia familiarità con l'utilizzo di Android Studio per sviluppare app per Android.
Per completare questo tutorial, assicurati che il tuo ambiente di sviluppo L'app per Android soddisfa i seguenti requisiti:
- Android Studio (versione più recente)
- La tua app per Android deve avere il livello API target 21 o versioni successive.
Configura il progetto
Prima di chiamare l'API Gemini, devi configurare il tuo progetto Android, include la configurazione della chiave API e l'aggiunta delle dipendenze dell'SDK al tuo account progetto e inizializzando il modello.
Configura la chiave API
Per utilizzare l'API Gemini, hai bisogno di una chiave API. Se non ne hai già uno, creare una chiave in Google AI Studio.
Proteggi la chiave API
Ti consigliamo vivamente di non controllare una chiave API per conoscere la tua versione
di controllo dei dati. Devi invece archiviarlo in un file local.properties
.
(disponibile nella directory root del progetto, ma esclusa dalla versione)
), quindi utilizza il comando
plug-in Secrets Gradle per Android
per leggere la chiave API come variabile di configurazione della build.
Kotlin
// Access your API key as a Build Configuration variable
val apiKey = BuildConfig.apiKey
Java
// Access your API key as a Build Configuration variable
String apiKey = BuildConfig.apiKey;
Tutti gli snippet di questo tutorial utilizzano questa best practice. Inoltre, se
l'implementazione del plug-in Secrets Gradle, puoi esaminare
app di esempio
per questo SDK oppure utilizza l'ultima anteprima di Android Studio Iguana, che dispone di
Modello di Gemini API Starter
(che include il file local.properties
per iniziare).
Aggiungi la dipendenza SDK al progetto
Nel file di configurazione Gradle del modulo (a livello di app) (ad es.
<project>/<app-module>/build.gradle.kts
), aggiungi la dipendenza per SDK Google AI per Android:Kotlin
dependencies { // ... other androidx dependencies // add the dependency for the Google AI client SDK for Android implementation("com.google.ai.client.generativeai:generativeai:0.9.0") }
Java
Per Java, devi aggiungere altre due librerie.
dependencies { // ... other androidx dependencies // add the dependency for the Google AI client SDK for Android implementation("com.google.ai.client.generativeai:generativeai:0.9.0") // Required for one-shot operations (to use `ListenableFuture` from Guava Android) implementation("com.google.guava:guava:31.0.1-android") // Required for streaming operations (to use `Publisher` from Reactive Streams) implementation("org.reactivestreams:reactive-streams:1.0.4") }
Sincronizza il tuo progetto Android con i file Gradle.
Inizializzare il modello generativo
Prima di poter effettuare chiamate API, devi inizializzare il modello generativo:
Kotlin
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with most use cases
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey
)
Java
Per Java, devi anche inizializzare l'oggetto GenerativeModelFutures
.
// Use a model that's applicable for your use case
// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
/* apiKey */ BuildConfig.apiKey);
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Quando specifichi un modello, tieni presente quanto segue:
Utilizza un modello specifico per il tuo caso d'uso (ad esempio
gemini-1.5-flash
per l'input multimodale). In questa guida, le istruzioni per ogni di implementazione, elencare il modello consigliato per ogni caso d'uso.
Implementare casi d'uso comuni
Ora che il tuo progetto è configurato, puoi esplorare l'utilizzo dell'API Gemini per per implementare diversi casi d'uso:
- Generare testo da input di solo testo
- Genera testo da input di testo e immagine (multimodale)
- Creare conversazioni in più passaggi (chat)
- Usa la modalità flusso per interazioni più rapide
Genera testo da input di solo testo
Quando l'input del prompt include solo testo, utilizza un modello Gemini 1.5 oppure
Modello Gemini 1.0 Pro con generateContent
per generare output di testo:
Kotlin
Tieni presente che generateContent()
è una funzione di sospensione e deve essere
dall'ambito della Coroutine. Se non conosci Coroutines, leggi
Kotlin Coroutines su Android.
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey
)
val prompt = "Write a story about a magic backpack."
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Tieni presente che generateContent()
restituisce un ListenableFuture
. Se
non hai familiarità con questa API, consulta la documentazione di Android su
Utilizzo di un ListenableFuture
.
// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content content = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
Executor executor = // ...
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Genera testo da input di testo e immagine (multimodale)
Gemini fornisce vari modelli in grado di gestire l'input multimodale (modelli Gemini 1.5) in modo da poter inserire sia testo che immagini. Assicurati di consulta i requisiti relativi alle immagini per i prompt.
Quando l'input del prompt include sia testo che immagini, utilizza un modello Gemini 1.5 con
generateContent
per generare un output di testo:
Kotlin
Tieni presente che generateContent()
è una funzione di sospensione e deve essere
dall'ambito della Coroutine. Se non conosci Coroutines, leggi
Kotlin Coroutines su Android.
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey
)
val image1: Bitmap = // ...
val image2: Bitmap = // ...
val inputContent = content {
image(image1)
image(image2)
text("What's different between these pictures?")
}
val response = generativeModel.generateContent(inputContent)
print(response.text)
Java
Tieni presente che generateContent()
restituisce un ListenableFuture
. Se
non hai familiarità con questa API, consulta la documentazione di Android su
Utilizzo di un ListenableFuture
.
// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Bitmap image1 = // ...
Bitmap image2 = // ...
Content content = new Content.Builder()
.addText("What's different between these pictures?")
.addImage(image1)
.addImage(image2)
.build();
Executor executor = // ...
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Creare conversazioni in più passaggi (chat)
Con Gemini, puoi creare conversazioni in formato libero in più turni. La
SDK semplifica il processo gestendo lo stato della conversazione.
con generateContent
, non è necessario memorizzare la cronologia delle conversazioni
per te.
Per creare una conversazione in più passaggi (come la chat), utilizza un modello Gemini 1.5 oppure la
Gemini 1.0 Pro e inizializzare la chat chiamando startChat()
.
Quindi utilizza sendMessage()
per inviare un nuovo messaggio per l'utente, a cui verrà aggiunto anche il codice
e la risposta alla cronologia chat.
Esistono due possibili opzioni per role
associate ai contenuti in un
conversazione:
user
: il ruolo che fornisce i prompt. Questo è il valore predefinito persendMessage
chiamate.model
: il ruolo che fornisce le risposte. Questo ruolo può essere utilizzato quando chiamata astartChat()
conhistory
esistente.
Kotlin
Tieni presente che generateContent()
è una funzione di sospensione e deve essere
dall'ambito della Coroutine. Se non conosci Coroutines, leggi
Kotlin Coroutines su Android.
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with multi-turn conversations (like chat)
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey
)
val chat = generativeModel.startChat(
history = listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") { text("Great to meet you. What would you like to know?") }
)
)
chat.sendMessage("How many paws are in my house?")
Java
Tieni presente che generateContent()
restituisce un ListenableFuture
. Se
non hai familiarità con questa API, consulta la documentazione di Android su
Utilizzo di un ListenableFuture
.
// The Gemini 1.5 models are versatile and work with multi-turn conversations (like chat)
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();
Executor executor = // ...
// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Usa la modalità flusso per interazioni più rapide
Per impostazione predefinita, il modello restituisce una risposta dopo aver completato l'intera generazione e il processo di sviluppo. Puoi ottenere interazioni più rapide non aspettando l'intero e usare la modalità flusso per gestire i risultati parziali.
L'esempio seguente mostra come implementare i flussi di dati con
generateContentStream
per generare testo da un prompt di input di testo e immagine.
Kotlin
Tieni presente che generateContentStream()
è una funzione di sospensione e deve essere
dall'ambito della Coroutine. Se non conosci Coroutines, leggi
Kotlin Coroutines su Android.
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey
)
val image1: Bitmap = // ...
val image2: Bitmap = // ...
val inputContent = content {
image(image1)
image(image2)
text("What's the difference between these pictures?")
}
var fullResponse = ""
generativeModel.generateContentStream(inputContent).collect { chunk ->
print(chunk.text)
fullResponse += chunk.text
}
Java
I metodi di flusso Java in questo SDK restituiscono un tipo Publisher
dalla scheda Reactive Streams
libreria.
// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Bitmap image1 = // ...
Bitmap image2 = // ...
Content content = new Content.Builder()
.addText("What's different between these pictures?")
.addImage(image1)
.addImage(image2)
.build();
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(content);
StringBuilder outputContent = new StringBuilder();
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
outputContent.append(chunk);
}
@Override
public void onComplete() {
System.out.println(outputContent);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) {
s.request(Long.MAX_VALUE);
}
});
Puoi utilizzare un approccio simile per casi d'uso di input di solo testo e chat:
Kotlin
Tieni presente che generateContentStream()
è una funzione di sospensione e deve essere
dall'ambito della Coroutine. Se non conosci Coroutines, leggi
Kotlin Coroutines su Android.
// Use streaming with text-only input
generativeModel.generateContentStream(inputContent).collect { chunk ->
print(chunk.text)
}
// Use streaming with multi-turn conversations (like chat)
val chat = generativeModel.startChat()
chat.sendMessageStream(inputContent).collect { chunk ->
print(chunk.text)
}
Java
I metodi di flusso Java in questo SDK restituiscono un tipo Publisher
dalla scheda Reactive Streams
libreria.
// Use streaming with text-only input
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(inputContent);
StringBuilder outputContent = new StringBuilder();
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
outputContent.append(chunk);
}
@Override
public void onComplete() {
System.out.println(outputContent);
}
@Override
public void onSubscribe(Subscription s) {
s.request(Long.MAX_VALUE);
}
// ... other methods omitted for brevity
});
// Use streaming with multi-turn conversations (like chat)
ChatFutures chat = model.startChat(history);
Publisher<GenerateContentResponse> streamingResponse =
chat.sendMessageStream(inputContent);
StringBuilder outputContent = new StringBuilder();
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
outputContent.append(chunk);
}
@Override
public void onComplete() {
System.out.println(outputContent);
}
@Override
public void onSubscribe(Subscription s) {
s.request(Long.MAX_VALUE);
}
// ... other methods omitted for brevity
});
Implementare casi d'uso avanzati
I casi d'uso comuni descritti nella sezione precedente di questo tutorial aiutano a utilizzare l'API Gemini. Questa sezione descrive alcuni e i casi d'uso che possono essere considerati più avanzati.
Chiamate di funzione
La chiamata di funzione semplifica l'ottenimento di output di dati strutturati da e modelli generativi. Puoi quindi utilizzare questi output per chiamare altre API e restituire i dati di risposta pertinenti al modello. In altre parole, la chiamata di funzione colleghi modelli generativi a sistemi esterni in modo che i contenuti generati includa le informazioni più aggiornate e accurate. Scopri di più nel tutorial sulle chiamate di funzione.
Conta token
Quando utilizzi prompt lunghi, potrebbe essere utile contare i token prima di inviare
al modello. I seguenti esempi mostrano come utilizzare countTokens()
per vari casi d'uso:
Kotlin
Tieni presente che countTokens()
è una funzione di sospensione e deve essere
dall'ambito della Coroutine. Se non conosci Coroutines, leggi
Kotlin Coroutines su Android.
// For text-only input
val (totalTokens) = generativeModel.countTokens("Write a story about a magic backpack.")
// For text-and-image input (multi-modal)
val multiModalContent = content {
image(image1)
image(image2)
text("What's the difference between these pictures?")
}
val (totalTokens) = generativeModel.countTokens(multiModalContent)
// For multi-turn conversations (like chat)
val history = chat.history
val messageContent = content { text("This is the message I intend to send")}
val (totalTokens) = generativeModel.countTokens(*history.toTypedArray(), messageContent)
Java
Tieni presente che countTokens()
restituisce un ListenableFuture
. Se
non hai familiarità con questa API, consulta la documentazione di Android su
Utilizzo di un ListenableFuture
.
Content text = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
Executor executor = // ...
// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(text);
Futures.addCallback(countTokensResponse, new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
// For text-and-image input
Bitmap image1 = // ...
Bitmap image2 = // ...
Content multiModalContent = new Content.Builder()
.addImage(image1)
.addImage(image2)
.addText("What's different between these pictures?")
.build();
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(multiModalContent);
// For multi-turn conversations (like chat)
List<Content> history = chat.getChat().getHistory();
Content messageContent = new Content.Builder()
.addText("This is the message I intend to send")
.build();
Collections.addAll(history, messageContent);
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(history.toArray(new Content[0]));
Opzioni per controllare la generazione di contenuti
Puoi controllare la generazione di contenuti configurando i parametri del modello e utilizzando impostazioni di sicurezza.
Configura i parametri del modello
Ogni richiesta inviata al modello include valori parametro che controllano come il modello genera una risposta. Il modello può generare risultati diversi diversi valori parametro. Scopri di più su Parametri del modello.
Kotlin
val config = generationConfig {
temperature = 0.9f
topK = 16
topP = 0.1f
maxOutputTokens = 200
stopSequences = listOf("red")
}
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with most use cases
modelName = "gemini-1.5-flash",
apiKey = BuildConfig.apiKey,
generationConfig = config
)
Java
GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.temperature = 0.9f;
configBuilder.topK = 16;
configBuilder.topP = 0.1f;
configBuilder.maxOutputTokens = 200;
configBuilder.stopSequences = Arrays.asList("red");
GenerationConfig generationConfig = configBuilder.build();
// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(
"gemini-1.5-flash",
BuildConfig.apiKey,
generationConfig
);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Utilizzare le impostazioni di sicurezza
Puoi utilizzare le impostazioni di sicurezza per regolare la probabilità di ricevere risposte che potrebbero essere considerati dannosi. Per impostazione predefinita, le impostazioni di sicurezza bloccano i contenuti con mezzo e/o con probabilità elevata di essere contenuti non sicuri in tutte le dimensioni. Impara scopri di più sulle impostazioni di sicurezza.
Per configurare un'impostazione di sicurezza:
Kotlin
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with most use cases
modelName = "gemini-1.5-flash",
apiKey = BuildConfig.apiKey,
safetySettings = listOf(
SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)
)
)
Java
SafetySetting harassmentSafety = new SafetySetting(HarmCategory.HARASSMENT,
BlockThreshold.ONLY_HIGH);
// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(
"gemini-1.5-flash",
BuildConfig.apiKey,
null, // generation config is optional
Collections.singletonList(harassmentSafety)
);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Puoi anche configurare più di un'impostazione di sicurezza:
Kotlin
val harassmentSafety = SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)
val hateSpeechSafety = SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE)
val generativeModel = GenerativeModel(
// The Gemini 1.5 models are versatile and work with most use cases
modelName = "gemini-1.5-flash",
apiKey = BuildConfig.apiKey,
safetySettings = listOf(harassmentSafety, hateSpeechSafety)
)
Java
SafetySetting harassmentSafety = new SafetySetting(HarmCategory.HARASSMENT,
BlockThreshold.ONLY_HIGH);
SafetySetting hateSpeechSafety = new SafetySetting(HarmCategory.HATE_SPEECH,
BlockThreshold.MEDIUM_AND_ABOVE);
// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(
"gemini-1.5-flash",
BuildConfig.apiKey,
null, // generation config is optional
Arrays.asList(harassmentSafety, hateSpeechSafety)
);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Passaggi successivi
La progettazione dei prompt è il processo di creazione dei prompt che suscitano l'interesse desiderato la risposta dai modelli linguistici. Scrivere prompt ben strutturati è fondamentale parte della garanzia di risposte accurate e di alta qualità da un modello linguistico. Scopri le best practice per la scrittura di prompt.
Gemini offre diverse varianti di modelli per soddisfare le esigenze di usi diversi come la complessità e i tipi di input, le implementazioni per la chat o altri le attività legate al linguaggio delle finestre di dialogo e i vincoli di dimensione. Scopri di più sui modelli Gemini disponibili.
L'SDK client per Android descritto in questo tutorial ti consente di accedere al Modelli Gemini Pro che vengono eseguiti sui server di Google. Per i casi d'uso che prevedono elaborando dati sensibili, disponibilità offline o risparmi sui costi per utilizzate di frequente, potresti prendere in considerazione l'accesso a Gemini Nano che viene eseguito sul dispositivo. Per ulteriori dettagli, consulta Tutorial per Android (sul dispositivo).