The MediaPipe Face Landmarker task lets you detect face landmarks and facial expressions in images and videos. You can use this task to identify human facial expressions, apply facial filters and effects, and create virtual avatars. This task uses machine learning (ML) models that can work with single images or a continuous stream of images. The task outputs 3-dimensional face landmarks, blendshape scores (coefficients representing facial expression) to infer detailed facial surfaces in real-time, and transformation matrices to perform the transformations required for effects rendering.
The code sample described in these instructions is available on GitHub. For more information about the capabilities, models, and configuration options of this task, see the Overview.
Code example
The MediaPipe Tasks example code is a simple implementation of a Face Landmarker app for Android. The example uses the camera on a physical Android device to detect faces in a continuous video stream. The app can also detect faces in images and videos from the device gallery.
You can use the app as a starting point for your own Android app, or refer to it when modifying an existing app. The Face Landmarker example code is hosted on GitHub.
Download the code
The following instructions show you how to create a local copy of the example code using the git command line tool.
To download the example code:
- Clone the git repository using the following command:
git clone https://github.com/google-ai-edge/mediapipe-samples
- Optionally, configure your git instance to use sparse checkout, so you have
only the files for the Face Landmarker example app:
cd mediapipe git sparse-checkout init --cone git sparse-checkout set examples/face_landmarker/android
After creating a local version of the example code, you can import the project into Android Studio and run the app. For instructions, see the Setup Guide for Android.
Key components
The following files contain the crucial code for this face landmarking example application:
- FaceLandmarkerHelper.kt - Initializes the face landmarker and handles the model and delegate selection.
- CameraFragment.kt - Handles the device camera and processes the image and video input data.
- GalleryFragment.kt - Interacts with
OverlayView
to display the output image or video. - OverlayView.kt - Implements the display with a face mesh for detected faces.
Setup
This section describes key steps for setting up your development environment and code projects specifically to use Face Landmarker. For general information on setting up your development environment for using MediaPipe tasks, including platform version requirements, see the Setup guide for Android.
Dependencies
The Face Landmarker task uses the com.google.mediapipe:tasks-vision
library. Add
this dependency to the build.gradle
file of your Android app:
dependencies {
implementation 'com.google.mediapipe:tasks-vision:latest.release'
}
Model
The MediaPipe Face Landmarker task requires a trained model bundle that is compatible with this task. For more information on available trained models for Face Landmarker, see the task overview Models section.
Select and download the model, and store it within your project directory:
<dev-project-root>/src/main/assets
Specify the path of the model within the ModelAssetPath
parameter. In the
example code, the model is defined in the
FaceLandmarkerHelper.kt
file:
baseOptionsBuilder.setModelAssetPath(MP_FACE_LANDMARKER_TASK)
Create the task
The MediaPipe Face Landmarker task uses the createFromOptions()
function to set up the
task. The createFromOptions()
function accepts values for the configuration
options. For more information on configuration options, see Configuration
options.
The Face Landmarker supports the following input data types: still images, video files, and live video streams. You need to specify the running mode corresponding to your input data type when creating the task. Choose the tab for your input data type to see how to create the task and run inference.
Image
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_FACE_LANDMARKER_TASK) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceLandmarker.FaceLandmarkerOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinFaceDetectionConfidence(minFaceDetectionConfidence) .setMinTrackingConfidence(minFaceTrackingConfidence) .setMinFacePresenceConfidence(minFacePresenceConfidence) .setNumFaces(maxNumFaces) .setRunningMode(RunningMode.IMAGE) val options = optionsBuilder.build() FaceLandmarker = FaceLandmarker.createFromOptions(context, options)
Video
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_FACE_LANDMARKER_TASK) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceLandmarker.FaceLandmarkerOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinFaceDetectionConfidence(minFaceDetectionConfidence) .setMinTrackingConfidence(minFaceTrackingConfidence) .setMinFacePresenceConfidence(minFacePresenceConfidence) .setNumFaces(maxNumFaces) .setRunningMode(RunningMode.VIDEO) val options = optionsBuilder.build() FaceLandmarker = FaceLandmarker.createFromOptions(context, options)
Live stream
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_FACE_LANDMARKER_TASK) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceLandmarker.FaceLandmarkerOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinFaceDetectionConfidence(minFaceDetectionConfidence) .setMinTrackingConfidence(minFaceTrackingConfidence) .setMinFacePresenceConfidence(minFacePresenceConfidence) .setNumFaces(maxNumFaces) .setResultListener(this::returnLivestreamResult) .setErrorListener(this::returnLivestreamError) .setRunningMode(RunningMode.LIVE_STREAM) val options = optionsBuilder.build() FaceLandmarker = FaceLandmarker.createFromOptions(context, options)
The Face Landmarker example code implementation allows the user to switch between
processing modes. The approach makes the task creation code more complicated and
may not be appropriate for your use case. You can see this code in the
setupFaceLandmarker()
function in the
FaceLandmarkerHelper.kt
file.
Configuration options
This task has the following configuration options for Android apps:
Option Name | Description | Value Range | Default Value |
---|---|---|---|
runningMode |
Sets the running mode for the task. There are three
modes: IMAGE: The mode for single image inputs. VIDEO: The mode for decoded frames of a video. LIVE_STREAM: The mode for a livestream of input data, such as from a camera. In this mode, resultListener must be called to set up a listener to receive results asynchronously. |
{IMAGE, VIDEO, LIVE_STREAM } |
IMAGE |
numFaces |
The maximum number of faces that can be detected by the
the FaceLandmarker . Smoothing is only applied when
num_faces is set to 1.
|
Integer > 0 |
1 |
minFaceDetectionConfidence |
The minimum confidence score for the face detection to be considered successful. | Float [0.0,1.0] |
0.5 |
minFacePresenceConfidence |
The minimum confidence score of face presence score in the face landmark detection. | Float [0.0,1.0] |
0.5 |
minTrackingConfidence |
The minimum confidence score for the face tracking to be considered successful. | Float [0.0,1.0] |
0.5 |
outputFaceBlendshapes |
Whether Face Landmarker outputs face blendshapes. Face blendshapes are used for rendering the 3D face model. | Boolean |
False |
outputFacialTransformationMatrixes |
Whether FaceLandmarker outputs the facial transformation matrix. FaceLandmarker uses the matrix to transform the face landmarks from a canonical face model to the detected face, so users can apply effects on the detected landmarks. | Boolean |
False |
resultListener |
Sets the result listener to receive the landmarker results
asynchronously when FaceLandmarker is in the live stream mode.
Can only be used when running mode is set to LIVE_STREAM |
ResultListener |
N/A |
errorListener |
Sets an optional error listener. | ErrorListener |
N/A |
Prepare data
Face Landmarker works with images, video files, and live video streams. The task handles the data input preprocessing, including resizing, rotation and value normalization.
The following code demonstrates how to hand off data for processing. These samples include details on how to handle data from images, video files, and live video streams.
Image
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(image).build()
Video
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage val argb8888Frame = if (frame.config == Bitmap.Config.ARGB_8888) frame else frame.copy(Bitmap.Config.ARGB_8888, false) // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(argb8888Frame).build()
Live stream
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(rotatedBitmap).build()
In the Face Landmarker example code, the data preparation is handled in the
FaceLandmarkerHelper.kt
file.
Run the task
Depending on the type of data your are working with, use the
FaceLandmarker.detect...()
method that is specific to that data type. Use
detect()
for individual images, detectForVideo()
for frames in video files,
and detectAsync()
for video streams. When you are performing detections on a
video stream, make sure you run the detections on a separate thread to avoid
blocking the user interface thread.
The following code samples show simple examples of how to run Face Landmarker in these different data modes:
Image
val result = FaceLandmarker.detect(mpImage)
Video
val timestampMs = i * inferenceIntervalMs FaceLandmarker.detectForVideo(mpImage, timestampMs) .let { detectionResult -> resultList.add(detectionResult) }
Live stream
val mpImage = BitmapImageBuilder(rotatedBitmap).build() val frameTime = SystemClock.uptimeMillis() FaceLandmarker.detectAsync(mpImage, frameTime)
Note the following:
- When running in the video mode or the live stream mode, you must provide the timestamp of the input frame to the Face Landmarker task.
- When running in the image or the video mode, the Face Landmarker task blocks the current thread until it finishes processing the input image or frame. To avoid blocking the user interface, execute the processing in a background thread.
- When running in the live stream mode, the Face Landmarker task returns immediately and doesn’t block the current thread. It will invoke the result listener with the detection result every time it finishes processing an input frame.
In the Face Landmarker example code, the detect
, detectForVideo
, and
detectAsync
functions are defined in the
FaceLandmarkerHelper.kt
file.
Handle and display results
The Face Landmarker returns a FaceLandmarkerResult
object for each detection
run. The result object contains a face mesh for each detected face, with
coordinates for each face landmark. Optionally, the result object can also
contain blendshapes, which denote facial expressions, and a facial
transformation matrices to apply face effects on the detected landmarks.
The following shows an example of the output data from this task:
FaceLandmarkerResult:
face_landmarks:
NormalizedLandmark #0:
x: 0.5971359014511108
y: 0.485361784696579
z: -0.038440968841314316
NormalizedLandmark #1:
x: 0.3302789330482483
y: 0.29289937019348145
z: -0.09489090740680695
... (478 landmarks for each face)
face_blendshapes:
browDownLeft: 0.8296722769737244
browDownRight: 0.8096957206726074
browInnerUp: 0.00035583582939580083
browOuterUpLeft: 0.00035752105759456754
... (52 blendshapes for each face)
facial_transformation_matrixes:
[9.99158978e-01, -1.23036895e-02, 3.91213447e-02, -3.70770246e-01]
[1.66496094e-02, 9.93480563e-01, -1.12779640e-01, 2.27719707e+01]
...
The following image shows a visualization of the task output:
The Face Landmarker example code demonstrates how to display the results returned
from the task, see the
OverlayView
class for more details.