The MediaPipe Image Embedder task lets you convert image data into a numeric representation to accomplish ML-related image processing tasks, such as comparing the similarity of two images.
The code sample described in these instructions is available on GitHub. You can see this task in action by viewing this Web demo. For more information about the capabilities, models, and configuration options of this task, see the Overview.
Code example
The MediaPipe Tasks example code is a basic implementation of an Image Embedder app for iOS. The example uses the camera on a physical iOS device to continuously embed images, and can also run the embedder on image files from the device gallery.
You can use the app as a starting point for your own iOS app, or refer to it when modifying an existing app. The Image Embedder example code is hosted on GitHub.
Download the code
The following instructions show you how to create a local copy of the example code using the git command line tool.
To download the example code:
Clone the git repository using the following command:
git clone https://github.com/google-ai-edge/mediapipe-samples
Optionally, configure your git instance to use sparse checkout, so you have only the files for the Image Embedder example app:
cd mediapipe git sparse-checkout init --cone git sparse-checkout set examples/image_embedder/ios
After creating a local version of the example code, you can install the MediaPipe task library, open the project using Xcode and run the app. For instructions, see the Setup Guide for iOS.
Key components
The following files contain the crucial code for the Image Embedder example application:
- ImageEmbedderService.swift: Initializes the Image Embedder, handles the model selection, and runs inference on the input data.
- CameraViewController.swift: Implements the UI for the live camera feed input mode and visualizes the results.
- MediaLibraryViewController.swift: Implements the UI for the still image input mode and visualizes the results.
Setup
This section describes key steps for setting up your development environment and code projects to use Image Embedder. For general information on setting up your development environment for using MediaPipe tasks, including platform version requirements, see the Setup guide for iOS.
Dependencies
Image Embedder uses the MediaPipeTasksVision
library, which must be installed
using CocoaPods. The library is compatible with both Swift and Objective-C apps
and does not require any additional language-specific setup.
For instructions to install CocoaPods on macOS, refer to the CocoaPods
installation guide.
For instructions on how to create a Podfile
with the necessary pods for your
app, refer to Using
CocoaPods.
Add the MediaPipeTasksVision
pod in the Podfile
using the following code:
target 'MyImageEmbedderApp' do
use_frameworks!
pod 'MediaPipeTasksVision'
end
If your app includes unit test targets, refer to the Set Up Guide for
iOS for additional information on setting up
your Podfile
.
Model
The MediaPipe Image Embedder task requires a trained model that is compatible with this task. For more information about the available trained models for Image Embedder, see the Models section.
Select and download a model, and add it to your project directory using Xcode. For instructions on how to add files to your Xcode project, refer to Managing files and folders in your Xcode project.
Use the BaseOptions.modelAssetPath
property to specify the path to the model
in your app bundle.
Create the task
You can create the Image Embedder task by calling one of its initializers. The
ImageEmbedder(options:)
initializer accepts values for the configuration
options.
If you don't need an Image Embedder initialized with customized configuration
options, you can use the ImageEmbedder(modelPath:)
initializer to create an
Image Embedder with the default options. For more information about configuration
options, see Configuration Overview.
The Image Embedder task supports 3 input data types: still images, video files
and live video streams. By default, ImageEmbedder(modelPath:)
initializes a
task for still images. If you want your task to be initialized to process video
files or live video streams, use ImageEmbedder(options:)
to specify the video
or livestream running mode. The livestream mode also requires the additional
imageEmbedderLiveStreamDelegate
configuration option, which enables the
Image Embedder to deliver image embedding results to the delegate asynchronously.
Choose the tab corresponding to your running mode to see how to create the task and run inference.
Swift
Image
import MediaPipeTasksVision let modelPath = Bundle.main.path( forResource: "model", ofType: "tflite") let options = ImageEmbedderOptions() options.baseOptions.modelAssetPath = modelPath options.quantize = true options.l2Normalize = true let imageEmbedder = try ImageEmbedder(options: options)
Video
import MediaPipeTasksVision let modelPath = Bundle.main.path( forResource: "model", ofType: "tflite") let options = ImageEmbedderOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .video options.quantize = true options.l2Normalize = true let imageEmbedder = try ImageEmbedder(options: options)
Livestream
import MediaPipeTasksVision // Class that conforms to the `ImageEmbedderLiveStreamDelegate` protocol and // implements the method that the image embedder calls once it finishes // embedding each input frame. class ImageEmbedderResultProcessor: NSObject, ImageEmbedderLiveStreamDelegate { func imageEmbedder( _ imageEmbedder: ImageEmbedder, didFinishEmbedding result: ImageEmbedderResult?, timestampInMilliseconds: Int, error: Error?) { // Process the image embedder result or errors here. } } let modelPath = Bundle.main.path( forResource: "model", ofType: "tflite") let options = ImageEmbedderOptions() options.baseOptions.modelAssetPath = modelPath options.runningMode = .liveStream options.quantize = true options.l2Normalize = true // Assign an object of the class to the `imageEmbedderLiveStreamDelegate` // property. let processor = ImageEmbedderResultProcessor() options.imageEmbedderLiveStreamDelegate = processor let imageEmbedder = try ImageEmbedder(options: options)
Objective-C
Image
@import MediaPipeTasksVision; NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageEmbedderOptions *options = [[MPPImageEmbedderOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeImage; options.quantize = YES; options.l2Normalize = YES; MPPImageEmbedder *imageEmbedder = [[MPPImageEmbedder alloc] initWithOptions:options error:nil];
Video
@import MediaPipeTasksVision; NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageEmbedderOptions *options = [[MPPImageEmbedderOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeVideo; options.quantize = YES; options.l2Normalize = YES; MPPImageEmbedder *imageEmbedder = [[MPPImageEmbedder alloc] initWithOptions:options error:nil];
Livestream
@import MediaPipeTasksVision; // Class that conforms to the `MPPImageEmbedderLiveStreamDelegate` protocol // and implements the method that the image embedder calls once it finishes // embedding each input frame. @interface APPImageEmbedderResultProcessor : NSObject@end @implementation APPImageEmbedderResultProcessor - (void)imageEmbedder:(MPPImageEmbedder *)imageEmbedder didFinishEmbeddingWithResult:(MPPImageEmbedderResult *)imageEmbedderResult timestampInMilliseconds:(NSInteger)timestampInMilliseconds error:(NSError *)error { // Process the image embedder result or errors here. } @end NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model" ofType:@"tflite"]; MPPImageEmbedderOptions *options = [[MPPImageEmbedderOptions alloc] init]; options.baseOptions.modelAssetPath = modelPath; options.runningMode = MPPRunningModeLiveStream; options.quantize = YES; options.l2Normalize = YES; // Assign an object of the class to the `imageEmbedderLiveStreamDelegate` // property. APPImageEmbedderResultProcessor *processor = [APPImageEmbedderResultProcessor new]; options.imageEmbedderLiveStreamDelegate = processor; MPPImageEmbedder *imageEmbedder = [[MPPImageEmbedder alloc] initWithOptions:options error:nil];
Configuration options
This task has the following configuration options for iOS apps:
Option name | Description | Value Range | Default Value |
---|---|---|---|
runningMode |
Sets the running mode for the task. Image Embedder has three modes:
IMAGE: The mode for single image inputs. VIDEO: The mode for decoded frames of a video. LIVE_STREAM: The mode for a livestream of input data, such as from a camera. In this mode, imageEmbedderLiveStreamDelegate must be set to an
instance of a class that implements the
ImageEmbedderLiveStreamDelegate to receive the results of
embedding image frames asynchronously.
|
{RunningMode.image, RunningMode.video, RunningMode.liveStream} | {RunningMode.image} |
l2Normalize |
Whether to normalize the returned feature vector with L2 norm. Use this option only if the model does not already contain a native L2_NORMALIZATION TFLite Op. In most cases, this is already the case and L2 normalization is thus achieved through TFLite inference with no need for this option. | Bool | false |
quantize |
Whether the returned embedding should be quantized to bytes via scalar quantization. Embeddings are implicitly assumed to be unit-norm and therefore any dimension is guaranteed to have a value in [-1.0, 1.0]. Use the l2Normalize option if this is not the case. | Bool | false |
When the running mode is set to livestream, the Image Embedder requires the
additional imageEmbedderLiveStreamDelegate
configuration option, which enables
the Image Embedder to deliver image embedding results asynchronously. The
delegate must implement the
imageEmbedder(_:didFinishEmbedding:timestampInMilliseconds:error:)
method,
which the Image Embedder calls after processing the results of embedding each
input image frame.
Option name | Description | Value Range | Default Value |
---|---|---|---|
imageEmbedderLiveStreamDelegate |
Enables Image Embedder to receive the results of embedding images
asynchronously in livestream mode. The class whose instance is set to this
property must implement the
imageEmbedder(_:didFinishEmbedding:timestampInMilliseconds:error:)
method. |
Not applicable | Not set |
Prepare data
You need to convert the input image or frame to an MPImage
object before
passing it to the Image Embedder. MPImage
supports different types of iOS image
formats, and can use them in any running mode for inference. For more
information about MPImage
, refer to the
MPImage API.
Choose an iOS image format based on your use case and the running mode your
application requires.MPImage
accepts the UIImage
, CVPixelBuffer
, and
CMSampleBuffer
iOS image formats.
UIImage
The UIImage
format is well-suited for the following running modes:
Images: images from an app bundle, user gallery, or file system formatted as
UIImage
images can be converted to anMPImage
object.Videos: use AVAssetImageGenerator to extract video frames to the CGImage format, then convert them to
UIImage
images.
Swift
// Load an image on the user's device as an iOS `UIImage` object. // Convert the `UIImage` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(uiImage: image)
Objective-C
// Load an image on the user's device as an iOS `UIImage` object. // Convert the `UIImage` object to a MediaPipe's Image object having the default // orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
The example initializes an MPImage
with the default
UIImage.Orientation.Up
orientation. You can initialize an MPImage
with any of the supported
UIImage.Orientation
values. Image Embedder does not support mirrored orientations like .upMirrored
,
.downMirrored
, .leftMirrored
, .rightMirrored
.
For more information about UIImage
, refer to the UIImage Apple Developer
Documentation.
CVPixelBuffer
The CVPixelBuffer
format is well-suited for applications that generate frames
and use the iOS CoreImage
framework for processing.
The CVPixelBuffer
format is well-suited for the following running modes:
Images: apps that generate
CVPixelBuffer
images after some processing using iOS'sCoreImage
framework can be sent to the Image Embedder in the image running mode.Videos: video frames can be converted to the
CVPixelBuffer
format for processing, and then sent to the Image Embedder in video mode.livestream: apps using an iOS camera to generate frames may be converted into the
CVPixelBuffer
format for processing before being sent to the Image Embedder in livestream mode.
Swift
// Obtain a CVPixelBuffer. // Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(pixelBuffer: pixelBuffer)
Objective-C
// Obtain a CVPixelBuffer. // Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the // default orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
For more information about CVPixelBuffer
, refer to the CVPixelBuffer Apple
Developer
Documentation.
CMSampleBuffer
The CMSampleBuffer
format stores media samples of a uniform media type, and is
well-suited for the livestream running mode. Live frames from iOS cameras are
asynchronously delivered in the CMSampleBuffer
format by iOS
AVCaptureVideoDataOutput.
Swift
// Obtain a CMSampleBuffer. // Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the default // orientation `UIImage.Orientation.up`. let image = try MPImage(sampleBuffer: sampleBuffer)
Objective-C
// Obtain a `CMSampleBuffer`. // Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the // default orientation `UIImageOrientationUp`. MPImage *image = [[MPPImage alloc] initWithSampleBuffer:sampleBuffer error:nil];
For more information about CMSampleBuffer
, refer to the CMSampleBuffer Apple
Developer
Documentation.
Run the task
To run the Image Embedder, use the embed()
method specific to the assigned
running mode:
- Still image:
embed(image:)
- Video:
embed(videoFrame:timestampInMilliseconds:)
- Livestream:
embedAsync(image:timestampInMilliseconds:)
The following code samples show basic examples of how to run Image Embedder in these different running modes:
Swift
Image
let result = try imageEmbedder.embed(image: image)
Video
let result = try imageEmbedder.embed( videoFrame: image, timestampInMilliseconds: timestamp)
Live stream
try imageEmbedder.embedAsync( image: image, timestampInMilliseconds: timestamp)
Objective-C
Image
MPPImageEmbedderResult *result = [imageEmbedder embedImage:image error:nil];
Video
MPPImageEmbedderResult *result = [imageEmbedder embedVideoFrame:image timestampInMilliseconds:timestamp error:nil];
Live stream
BOOL success = [imageEmbedder embedAsyncImage:image timestampInMilliseconds:timestamp error:nil];
The Image Embedder code example shows the implementations of each of these modes
in more detail embed(image:)
, embed(videoFrame:timestampInMilliseconds:)
,
and embedAsync(image:timestampInMilliseconds:)
. The example code allows the
user to switch between processing modes which may not be required for your use
case.
Note the following:
When running in video mode or livestream mode, you must also provide the timestamp of the input frame to the Image Embedder task.
When running in image or video mode, the Image Embedder task blocks the current thread until it finishes processing the input image or frame. To avoid blocking the current thread, execute the processing in a background thread using iOS Dispatch or NSOperation frameworks. If your app is created using Swift, you can also use Swift Concurrency for background thread execution.
When running in livestream mode, the Image Embedder task returns immediately and doesn't block the current thread. It invokes the
imageEmbedder(_:didFinishEmbedding:timestampInMilliseconds:error:)
method with the results, after embedding each input frame. The Image Embedder invokes this method asynchronously on a dedicated serial dispatch queue. For displaying results on the user interface, dispatch the results to the main queue after processing the results. If theembedAsync
function is called when the Image Embedder task is busy processing another frame, the Image Embedder ignores the new input frame.
Handle and display results
Upon running inference, the Image Embedder returns an ImageEmbedderResult
object that contains a list of embeddings (either floating point or
scalar-quantized) for the input image.
The following shows an example of the output data from this task:
ImageEmbedderResult:
Embedding #0 (sole embedding head):
float_embedding: {0.0, 0.0, ..., 0.0, 1.0, 0.0, 0.0, 2.0}
head_index: 0
This result was obtained by embedding the following image:
You can compare the similarity of two embeddings using the
ImageEmbedder.cosineSimilarity
function.
Swift
let similarity = try ImageEmbedder.cosineSimilarity( embedding1: result.embeddingResult.embeddings[0], embedding2: otherResult.embeddingResult.embeddings[0])
Objective-C
NSNumber *similarity = [MPPImageEmbedder cosineSimilarityBetweenEmbedding1:result.embeddingResult.embeddings[0] andEmbedding2:otherResult.embeddingResult.embeddings[0] error:nil];