İşlev çağrısı eğiticisi

İşlev çağrısı, üretken modellerden yapılandırılmış veri çıkışları almanızı kolaylaştırır. Ardından bu çıkışları kullanarak diğer API'leri çağırabilir ve yanıt verilerini modele uygun hale getirmemize yardımcı olur. Başka bir deyişle, işlev çağrısı üretken modelleri harici sistemlere bağlarsınız. Böylece, en güncel ve doğru bilgileri içerir.

Gemini modellerine işlevlerin açıklamalarını sağlayabilirsiniz. Bunlar, uygulamanızın dilinde yazdığınız işlevlerdir (yani Google Cloud Functions değildir). Model, sizden bir işlevi çağırmanızı ve sonuç; modelin sorgunuzu ele almasına yardımcı olur.

Henüz yapmadıysanız Öğrenmek için işlev çağrısına giriş daha fazla bilgi verebilir.

Aydınlatma kontrolü için örnek API

Bir uygulama programlaması ile temel bir ışıklandırma kontrol sisteminiz olduğunu düşünün API'sını kullanıyor ve kullanıcıların ışıkları basit bir şekilde kontrol etmesine izin vermek metin istekleri. Işıklandırmayı yorumlamak için İşlev Çağrısı özelliğini kullanabilirsiniz ışıklandırmayı ayarlamak için kullanıcılardan gelen istekleri değiştirme ve bunları API çağrılarına dönüştürme değerler. Bu varsayımsal aydınlatma kontrol sistemi, ışığın parlaklığını ve renk sıcaklığını iki ayrı parametre olarak kontrol etmenize olanak tanır:

Parametre Tür Zorunlu Açıklama
brightness sayı evet 0 ile 100 arasında değişen ışık seviyesi. Sıfır kapalı, 100 tam parlaklık.
colorTemperature dize evet Aydınlatma armatürünün renk sıcaklığı (daylight, cool veya warm).

Basitlik sağlaması açısından, bu hayali aydınlatma sisteminde yalnızca tek bir ışığa sahiptir, böylece kullanıcı bir oda veya yer belirtmesi gerekmiyor. Aşağıda örnek bir JSON isteği verilmiştir ışık seviyesini %50 olarak değiştirmek için ışık kontrolü API'sine gönderebilirsin gün ışığı renk sıcaklığını kullanarak:

{
  "brightness": "50",
  "colorTemperature": "daylight"
}

Bu eğiticide, Gemini API için İşlev Çağrısı'nın nasıl kontrol etmek için kullanıcıların ışıklandırma isteklerini yorumlamak ve API ayarlarıyla eşlemek ışığın parlaklık ve renk sıcaklığı değerlerini yansıtabilir.

Başlamadan önce: Projenizi ve API anahtarınızı oluşturun

Gemini API'yi çağırmadan önce projenizi ayarlamanız ve API anahtarınız.

API işlevleri tanımlayın

API isteği gönderen bir işlev oluşturun. Bu fonksiyon tanımlanmalıdır. olup olmadığını kontrol edebilir, ancak en iyi yoludur. Gemini API doğrudan bu işlevi çağrımaz. Bu nedenle, bu işlevin uygulamanız üzerinden nasıl ve ne zaman yürütüleceğini kontrol edebilir girin. Gösterim amacıyla bu eğiticide yalnızca istenen ışıklandırma değerlerini döndürür:

func setLightValues(brightness: String,
                    colorTemp: String) -> JSONObject {
  // This mock API returns the requested lighting values
  return [
    "brightness": .string(brightness),
    "colorTemperature": .string(colorTemp)
  ]
}

İşlev tanımları oluşturma

Üretken modele ileteceğiniz işlev tanımını oluşturun. Model tarafından kullanılacak bir işlev tanımlarken işlev ve parametre açıklamalarına mümkün olduğunca fazla ayrıntı eklemeniz gerekir. Üretken model bu bilgiyi, hangi işlevin seçileceğini ve işlevin nasıl sağlanacağını belirlemek için parametre değerlerini içerir. Aşağıdaki kodda, aydınlatma kontrol işlevinin nasıl tanımlanacağı gösterilmektedir:

let controlLightFunctionDeclaration = FunctionDeclaration(
  name: "controlLight",
  description: "Set the brightness and color temperature of a room light.",
  parameters: [
    "brightness": Schema(
      type: .string,
      description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
    ),
    "colorTemperature": Schema(
      type: .string,
      description: "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`."
    ),
  ],
  requiredParameters: ["brightness", "colorTemperature"]
)

Model başlatma sırasında işlevleri bildirme

İşlev çağrısını bir modelle kullanmak istediğinizde işlev bildirimlerinin her biri için bir ekran görüntüsü sunar. İşlevleri açıkladınız modelin tools parametresini ayarlayarak:

// Use a model that supports function calling, like a Gemini 1.5 model
let generativeModel = GenerativeModel(
  name: "gemini-1.5-flash",
  apiKey: apiKey,
  // Specify the function declaration.
  tools: [Tool(functionDeclarations: [controlLightFunctionDeclaration])]
)

İşlev çağrısı oluşturma

Modeli işlev beyanlarınızla başlattıktan sonra, modele tanımlanmış işlevi isteyebilirsiniz. İşlev çağrısını sohbet istemi (sendMessage()), çünkü işlev çağrısı genellikle önceki istemlerin ve yanıtların bağlamına bakın.

let chat = generativeModel.startChat()

let prompt = "Dim the lights so the room feels cozy and warm."

// Send the message to the generative model
let response1 = try await chat.sendMessage(prompt)

// Check if the model responded with a function call
guard let functionCall = response1.functionCalls.first else {
  fatalError("Model did not respond with a function call.")
}
// Print an error if the returned function was not declared
guard functionCall.name == "controlLight" else {
  fatalError("Unexpected function called: \(functionCall.name)")
}
// Verify that the names and types of the parameters match the declaration
guard case let .string(brightness) = functionCall.args["brightness"] else {
  fatalError("Missing argument: brightness")
}
guard case let .string(colorTemp) = functionCall.args["colorTemperature"] else {
  fatalError("Missing argument: colorTemperature")
}

// Call the hypothetical API
let apiResponse = setLightValues(brightness: brightness, colorTemperature: colorTemp)

// Send the API response back to the model so it can generate a text response that can be
// displayed to the user.
let response = try await chat.sendMessage([ModelContent(
  role: "function",
  parts: [.functionResponse(FunctionResponse(
    name: functionCall.name,
    response: apiResponse
  ))]
)])

// Log the text response.
guard let modelResponse = response.text else {
  fatalError("Model did not respond with text.")
}
print(modelResponse)