Instructivo: Comienza a usar la API de Gemini


En este instructivo, se muestra cómo acceder a la API de Gemini para tu aplicación de Go con el SDK de la IA de Google para Go.

En este instructivo, aprenderás a hacer lo siguiente:

Además, este instructivo contiene secciones sobre casos de uso avanzados (como incorporaciones y recuentos de tokens) y opciones para controlar la generación de contenido.

Requisitos previos

En este instructivo, se supone que estás familiarizado con la compilación de aplicaciones con Go.

Para completar este instructivo, asegúrate de que tu entorno de desarrollo cumpla con los siguientes requisitos:

  • Go 1.20+

Configura tu proyecto

Antes de llamar a la API de Gemini, debes configurar tu proyecto, lo que incluye configurar tu clave de API, instalar el paquete del SDK y, luego, inicializar el modelo.

Cómo configurar tu clave de API

Para usar la API de Gemini, necesitarás una clave de API. Si aún no tienes una, crea una clave en Google AI Studio.

Obtén una clave de API.

Protege tu clave de API

Te recomendamos que no registres una clave de API en tu sistema de control de versión. En su lugar, debes usar un almacén de secretos para tu clave de API.

En todos los fragmentos de este instructivo, se supone que accedes a tu clave de API como una variable de entorno.

Instala el paquete del SDK

Para usar la API de Gemini en tu aplicación, debes get el paquete del SDK de Go en el directorio de tu módulo:

go get github.com/google/generative-ai-go

Inicializa el modelo generativo

Antes de que puedas hacer llamadas a la API, debes importar e inicializar el modelo generativo.

import "github.com/google/generative-ai-go/genai"
import "google.golang.org/api/option"

ctx := context.Background()
// Access your API key as an environment variable (see "Set up your API key" above)
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("API_KEY")))
if err != nil {
  log.Fatal(err)
}
defer client.Close()

// The Gemini 1.5 models are versatile and work with most use cases
model := client.GenerativeModel("gemini-1.5-flash")

Cuando especifiques un modelo, ten en cuenta lo siguiente:

  • Usa un modelo que sea específico para tu caso de uso (por ejemplo, gemini-1.5-flash es para la entrada multimodal). En esta guía, las instrucciones para cada implementación incluyen el modelo recomendado para cada caso de uso.

Implementa casos de uso comunes

Ahora que tu proyecto está configurado, puedes explorar el uso de la API de Gemini para implementar diferentes casos de uso:

En la sección de casos de uso avanzados, puedes encontrar información sobre la API de Gemini y las incorporaciones.

Cómo generar texto a partir de entradas de solo texto

Cuando la entrada de la instrucción incluya solo texto, usa un modelo de Gemini 1.5 o un modelo de Gemini 1.0 Pro con generateContent para generar una salida de texto:

ctx := context.Background()
// Access your API key as an environment variable (see "Set up your API key" above)
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("API_KEY")))
if err != nil {
  log.Fatal(err)
}
defer client.Close()

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Write a story about a magic backpack."))
if err != nil {
  log.Fatal(err)
}

Generar texto a partir de entradas de texto e imagen (multimodal)

Gemini proporciona varios modelos que pueden controlar entradas multimodales (modelos Gemini 1.5 y Gemini 1.0 Pro Vision) para que puedas ingresar texto e imágenes. Asegúrate de revisar los requisitos de las imágenes para los mensajes.

Cuando la entrada de un mensaje incluya imágenes y texto, usa un modelo de Gemini 1.5 o un modelo de Gemini 1.0 Pro Vision con el método generateContent para generar una salida de texto:

ctx := context.Background()
// Access your API key as an environment variable (see "Set up your API key" above)
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("API_KEY")))
if err != nil {
  log.Fatal(err)
}
defer client.Close()

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
model := client.GenerativeModel("gemini-1.5-flash")

imgData1, err := os.ReadFile(pathToImage1)
if err != nil {
  log.Fatal(err)
}

imgData2, err := os.ReadFile(pathToImage1)
if err != nil {
  log.Fatal(err)
}

prompt := []genai.Part{
  genai.ImageData("jpeg", imgData1),
  genai.ImageData("jpeg", imgData2),
  genai.Text("What's different between these two pictures?"),
}
resp, err := model.GenerateContent(ctx, prompt...)

if err != nil {
  log.Fatal(err)
}

Crea conversaciones de varios turnos (chat)

Con Gemini, puedes desarrollar conversaciones de formato libre en varios turnos. El SDK simplifica el proceso mediante la administración del estado de la conversación, por lo que, a diferencia de GenerateContent, no tienes que almacenar el historial de la conversación.

Para crear una conversación de varios turnos (como el chat), usa un modelo Gemini 1.5 o Gemini 1.0 Pro y, luego, inicializa el chat llamando a startChat(). Luego, usa sendMessage() para enviar un mensaje al usuario nuevo, que también adjuntará el mensaje y la respuesta al historial de chat.

Hay dos opciones posibles para role asociado con el contenido en una conversación:

  • user: Es el rol que proporciona las indicaciones. Este es el valor predeterminado para las llamadas a SendMessage.

  • model: Es la función que proporciona las respuestas. Esta función se puede usar cuando se llama a StartChat() con history existente.

ctx := context.Background()
// Access your API key as an environment variable (see "Set up your API key" above)
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("API_KEY")))
if err != nil {
  log.Fatal(err)
}
defer client.Close()

// The Gemini 1.5 models are versatile and work with multi-turn conversations (like chat)
model := client.GenerativeModel("gemini-1.5-flash")
// Initialize the chat
cs := model.StartChat()
cs.History = []*genai.Content{
  &genai.Content{
    Parts: []genai.Part{
      genai.Text("Hello, I have 2 dogs in my house."),
    },
    Role: "user",
  },
  &genai.Content{
    Parts: []genai.Part{
      genai.Text("Great to meet you. What would you like to know?"),
    },
    Role: "model",
  },
}

resp, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
  log.Fatal(err)
}

Usa la transmisión para interacciones más rápidas

Según la configuración predeterminada, el modelo muestra una respuesta después de completar todo el proceso de generación. Puedes lograr interacciones más rápidas si no esperas a que se complete el resultado y, en su lugar, usa la transmisión para controlar los resultados parciales.

En el siguiente ejemplo, se muestra cómo implementar la transmisión con el método GenerateContentStream para generar texto a partir de una solicitud de entrada de imagen y texto.

ctx := context.Background()
// Access your API key as an environment variable (see "Set up your API key" above)
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("API_KEY")))
if err != nil {
  log.Fatal(err)
}
defer client.Close()

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
model := client.GenerativeModel("gemini-1.5-flash")

imageBytes, err := os.ReadFile(pathToImage)

img := genai.ImageData("jpeg", imageBytes)
prompt := genai.Text("Tell me a story about this animal")
iter := model.GenerateContentStream(ctx, img, prompt)

for {
  resp, err := iter.Next()
  if err == iterator.Done {
    break
  }
  if err != nil {
    log.Fatal(err)
  }

  // ... print resp
}

Puedes usar un enfoque similar para los casos de uso de chat y entradas de solo texto.

prompt := genai.Text("Tell me a story about a lumberjack and his giant ox")
iter := model.GenerateContentStream(ctx, prompt)
prompt := genai.Text("And how do you feel about that?")
iter := cs.SendMessageStream(ctx, prompt)

Implementa casos de uso avanzados

Los casos de uso comunes descritos en la sección anterior de este instructivo te ayudarán a familiarizarte con el uso de la API de Gemini. En esta sección, se describen algunos casos de uso que podrían considerarse más avanzados.

Usa incorporaciones

La incorporación es una técnica que se usa para representar información como una lista de números de punto flotante en un array. Con Gemini, puedes representar texto (palabras, oraciones y bloques de texto) en un formato vectorizado, lo que facilita la comparación y el contraste de las incorporaciones. Por ejemplo, dos textos que comparten una opinión o un tema similar deben tener incorporaciones similares, que se pueden identificar a través de técnicas de comparación matemática, como la similitud coseno.

Usa el modelo embedding-001 con el método EmbedContent (o el método BatchEmbedContent) para generar incorporaciones. En el siguiente ejemplo, se genera una incorporación para una sola string:

ctx := context.Background()
// Access your API key as an environment variable (see "Set up your API key" above)
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("API_KEY")))
if err != nil {
  log.Fatal(err)
}
defer client.Close()
// For embeddings, use the embedding-001 model
em := client.EmbeddingModel("embedding-001")
res, err := em.EmbedContent(ctx, genai.Text("The quick brown fox jumps over the lazy dog."))

if err != nil {
  panic(err)
}
fmt.Println(res.Embedding.Values)

Llamada a función

La llamada a funciones facilita la obtención de resultados de datos estructurados de modelos generativos. Luego, puedes usar estos resultados para llamar a otras APIs y mostrar los datos de respuesta relevantes al modelo. En otras palabras, la llamada a funciones te ayuda a conectar modelos generativos a sistemas externos para que el contenido generado incluya la información más actualizada y precisa. Obtén más información en el instructivo de llamada a funciones.

Contar tokens

Cuando se usan instrucciones largas, puede ser útil contar los tokens antes de enviar contenido al modelo. En los siguientes ejemplos, se muestra cómo usar CountTokens() para varios casos de uso:

// For text-only input
text := "Parrots can be green and live a long time."
resp, err := model.CountTokens(ctx, genai.Text(text))
if err != nil {
  log.Fatal(err)
}
fmt.Println(resp.TotalTokens)
// For text-and-image input (multimodal)
text := "Parrots can be green and live a long time."
imageBytes, err := os.ReadFile(pathToImage)
if err != nil {
  log.Fatal(err)
}

resp, err := model.CountTokens(
    ctx,
    genai.Text(text),
    genai.ImageData("png", imageBytes))
  if err != nil {
    log.Fatal(err)
}
fmt.Println(resp.TotalTokens)

Opciones para controlar la generación de contenido

Puedes controlar la generación de contenido mediante la configuración de los parámetros del modelo y la configuración de seguridad.

Configura los parámetros del modelo

Cada instrucción que envías al modelo incluye valores de parámetros que controlan cómo el modelo genera una respuesta. El modelo puede generar resultados diferentes para los valores de parámetros diferentes. Obtén más información sobre los parámetros del modelo. La configuración se mantiene durante toda la vida útil de la instancia de modelo.

// ...

// The Gemini 1.5 models are versatile and work with most use cases
model := client.GenerativeModel("gemini-1.5-flash")

// Configure model parameters by invoking Set* methods on the model.
model.SetTemperature(0.9)
model.SetTopK(1)

// ...

Usar la configuración de seguridad

Puedes usar la configuración de seguridad para ajustar la probabilidad de obtener respuestas que puedan considerarse perjudiciales. De forma predeterminada, la configuración de seguridad bloquea el contenido con probabilidad media o alta de ser contenido inseguro en todas las dimensiones. Obtén más información sobre la configuración de seguridad.

Para establecer una configuración de seguridad, sigue estos pasos:

// ...

// The Gemini 1.5 models are versatile and work with most use cases
model := client.GenerativeModel("gemini-1.5-flash")

model.SafetySettings = []*genai.SafetySetting{
  {
    Category:  genai.HarmCategoryHarassment,
    Threshold: genai.HarmBlockOnlyHigh,
  },
}

// ...

También puedes establecer más de una configuración de seguridad:

// ...

// The Gemini 1.5 models are versatile and work with most use cases
model := client.GenerativeModel("gemini-1.5-flash")

model.SafetySettings = []*genai.SafetySetting{
  {
    Category:  genai.HarmCategoryHarassment,
    Threshold: genai.HarmBlockOnlyHigh,
  },
  {
    Category:  genai.HarmCategoryHateSpeech,
    Threshold: genai.HarmBlockMediumAndAbove,
  },
}

// ...

¿Qué sigue?

  • El diseño de instrucciones es el proceso de crear instrucciones que producen la respuesta deseada de los modelos de lenguaje. Escribir instrucciones bien estructuradas es una parte esencial de garantizar respuestas precisas y de alta calidad desde un modelo de lenguaje. Obtén más información sobre las prácticas recomendadas para la escritura de instrucciones.

  • Gemini ofrece muchas variaciones del modelo para satisfacer las necesidades de distintos casos de uso, como los tipos de entrada y la complejidad, las implementaciones para chat y otras tareas de lenguaje de diálogo, y las restricciones de tamaño. Obtén más información sobre los modelos de Gemini disponibles.

  • Gemini ofrece opciones para solicitar aumentos del límite de frecuencia. El límite de frecuencia de los modelos Gemini Pro es de 60 solicitudes por minuto (RPM).