Os modelos do Gemini podem ser acessados usando as bibliotecas OpenAI (Python e TypeScript / Javascript) com a API REST. Para isso, atualize três linhas de código e use sua chave de API do Gemini. Se você ainda não usa as bibliotecas OpenAI, recomendamos chamar a API Gemini diretamente.
Python
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
    model="gemini-2.5-flash",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ]
    }'
O que mudou? Apenas três linhas!
- api_key="GEMINI_API_KEY": substitua "- GEMINI_API_KEY" pela sua chave de API Gemini, que você pode acessar no Google AI Studio.
- base_url="https://generativelanguage.googleapis.com/v1beta/openai/":isso informa à biblioteca OpenAI para enviar solicitações ao endpoint da API Gemini em vez do URL padrão.
- model="gemini-2.0-flash": escolha um modelo do Gemini compatível
Pensando
Os modelos do Gemini 2.5 são treinados para pensar em problemas complexos, o que melhora muito o raciocínio. A API Gemini vem com um parâmetro de"orçamento de pensamento" que oferece controle refinado sobre o quanto o modelo vai pensar.
Ao contrário da API Gemini, a API OpenAI oferece três níveis de controle de pensamento: "low", "medium" e "high", que correspondem a 1.024, 8.192 e 24.576 tokens, respectivamente.
Se quiser desativar o pensamento, defina reasoning_effort como "none". Não é possível desativar o raciocínio para modelos 2.5 Pro.
Python
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
    model="gemini-2.5-flash",
    reasoning_effort="low",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
    model: "gemini-2.5-flash",
    reasoning_effort: "low",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "reasoning_effort": "low",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
      ]
    }'
Os modelos de pensamento do Gemini também produzem resumos de pensamento e podem usar orçamentos de pensamento exatos.
Use o campo extra_body para incluir esses campos na sua solicitação.
Como reasoning_effort e thinking_budget têm funcionalidades semelhantes, não é possível usar os dois ao mesmo tempo.
Python
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
    model="gemini-2.5-flash",
    messages=[{"role": "user", "content": "Explain to me how AI works"}],
    extra_body={
      'extra_body': {
        "google": {
          "thinking_config": {
            "thinking_budget": 800,
            "include_thoughts": True
          }
        }
      }
    }
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
    model: "gemini-2.5-flash",
    messages: [{role: "user", content: "Explain to me how AI works",}],
    extra_body: {
      "google": {
        "thinking_config": {
          "thinking_budget": 800,
          "include_thoughts": true
        }
      }
    }
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
      "messages": [{"role": "user", "content": "Explain to me how AI works"}],
      "extra_body": {
        "google": {
           "thinking_config": {
             "include_thoughts": true
           }
        }
      }
    }'
Streaming
A API Gemini oferece suporte a respostas de streaming.
Python
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ],
  stream=True
)
for chunk in response:
    print(chunk.choices[0].delta)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
  const completion = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
      {"role": "system", "content": "You are a helpful assistant."},
      {"role": "user", "content": "Hello!"}
    ],
    stream: true,
  });
  for await (const chunk of completion) {
    console.log(chunk.choices[0].delta.content);
  }
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ],
    "stream": true
  }'
Chamadas de função
Com as chamadas de função, fica mais fácil receber saídas de dados estruturados de modelos generativos, e elas são compatíveis com a API Gemini.
Python
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
tools = [
  {
    "type": "function",
    "function": {
      "name": "get_weather",
      "description": "Get the weather in a given location",
      "parameters": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. Chicago, IL",
          },
          "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
      },
    }
  }
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=messages,
  tools=tools,
  tool_choice="auto"
)
print(response)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
  const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
  const tools = [
      {
        "type": "function",
        "function": {
          "name": "get_weather",
          "description": "Get the weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. Chicago, IL",
              },
              "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
          },
        }
      }
  ];
  const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: messages,
    tools: tools,
    tool_choice: "auto",
  });
  console.log(response);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [
    {
      "role": "user",
      "content": "What'\''s the weather like in Chicago today?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. Chicago, IL"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location"]
        }
      }
    }
  ],
  "tool_choice": "auto"
}'
Compreensão de imagens
Os modelos do Gemini são multimodais nativos e oferecem o melhor desempenho da categoria em muitas tarefas comuns de visão.
Python
import base64
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Function to encode the image
def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")
response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url":  f"data:image/jpeg;base64,{base64_image}"
          },
        },
      ],
    }
  ],
)
print(response.choices[0])
JavaScript
import OpenAI from "openai";
import fs from 'fs/promises';
const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function encodeImage(imagePath) {
  try {
    const imageBuffer = await fs.readFile(imagePath);
    return imageBuffer.toString('base64');
  } catch (error) {
    console.error("Error encoding image:", error);
    return null;
  }
}
async function main() {
  const imagePath = "Path/to/agi/image.jpeg";
  const base64Image = await encodeImage(imagePath);
  const messages = [
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url": `data:image/jpeg;base64,${base64Image}`
          },
        },
      ],
    }
  ];
  try {
    const response = await openai.chat.completions.create({
      model: "gemini-2.0-flash",
      messages: messages,
    });
    console.log(response.choices[0]);
  } catch (error) {
    console.error("Error calling Gemini API:", error);
  }
}
main();
REST
bash -c '
  base64_image=$(base64 -i "Path/to/agi/image.jpeg");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-2.0-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"What is in this image?\" },
            {
              \"type\": \"image_url\",
              \"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
            }
          ]
        }
      ]
    }"
'
Gerar uma imagem
Gerar uma imagem:
Python
import base64
from openai import OpenAI
from PIL import Image
from io import BytesIO
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
)
response = client.images.generate(
    model="imagen-3.0-generate-002",
    prompt="a portrait of a sheepadoodle wearing a cape",
    response_format='b64_json',
    n=1,
)
for image_data in response.data:
  image = Image.open(BytesIO(base64.b64decode(image_data.b64_json)))
  image.show()
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
  const image = await openai.images.generate(
    {
      model: "imagen-3.0-generate-002",
      prompt: "a portrait of a sheepadoodle wearing a cape",
      response_format: "b64_json",
      n: 1,
    }
  );
  console.log(image.data);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/images/generations" \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer GEMINI_API_KEY" \
  -d '{
        "model": "imagen-3.0-generate-002",
        "prompt": "a portrait of a sheepadoodle wearing a cape",
        "response_format": "b64_json",
        "n": 1,
      }'
Compreensão de áudio
Analisar entrada de áudio:
Python
import base64
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
with open("/path/to/your/audio/file.wav", "rb") as audio_file:
  base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')
response = client.chat.completions.create(
    model="gemini-2.0-flash",
    messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "Transcribe this audio",
        },
        {
              "type": "input_audio",
              "input_audio": {
                "data": base64_audio,
                "format": "wav"
          }
        }
      ],
    }
  ],
)
print(response.choices[0].message.content)
JavaScript
import fs from "fs";
import OpenAI from "openai";
const client = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
const audioFile = fs.readFileSync("/path/to/your/audio/file.wav");
const base64Audio = Buffer.from(audioFile).toString("base64");
async function main() {
  const response = await client.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
      {
        role: "user",
        content: [
          {
            type: "text",
            text: "Transcribe this audio",
          },
          {
            type: "input_audio",
            input_audio: {
              data: base64Audio,
              format: "wav",
            },
          },
        ],
      },
    ],
  });
  console.log(response.choices[0].message.content);
}
main();
REST
bash -c '
  base64_audio=$(base64 -i "/path/to/your/audio/file.wav");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-2.0-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"Transcribe this audio file.\" },
            {
              \"type\": \"input_audio\",
              \"input_audio\": {
                \"data\": \"${base64_audio}\",
                \"format\": \"wav\"
              }
            }
          ]
        }
      ]
    }"
'
Resposta estruturada
Os modelos do Gemini podem gerar objetos JSON em qualquer estrutura que você definir.
Python
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]
completion = client.beta.chat.completions.parse(
    model="gemini-2.0-flash",
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
    ],
    response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
JavaScript
import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";
const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});
const CalendarEvent = z.object({
  name: z.string(),
  date: z.string(),
  participants: z.array(z.string()),
});
const completion = await openai.chat.completions.parse({
  model: "gemini-2.0-flash",
  messages: [
    { role: "system", content: "Extract the event information." },
    { role: "user", content: "John and Susan are going to an AI conference on Friday" },
  ],
  response_format: zodResponseFormat(CalendarEvent, "event"),
});
const event = completion.choices[0].message.parsed;
console.log(event);
Embeddings
Os embeddings de texto medem a relação entre strings de texto e podem ser gerados usando a API Gemini.
Python
from openai import OpenAI
client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.embeddings.create(
    input="Your text string goes here",
    model="gemini-embedding-001"
)
print(response.data[0].embedding)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
  const embedding = await openai.embeddings.create({
    model: "gemini-embedding-001",
    input: "Your text string goes here",
  });
  console.log(embedding);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "input": "Your text string goes here",
    "model": "gemini-embedding-001"
  }'
API Batch
É possível criar jobs em lote, enviá-los e verificar o status deles usando a biblioteca OpenAI.
Você precisa preparar o arquivo JSONL no formato de entrada da OpenAI. Exemplo:
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
A compatibilidade com a OpenAI para o Batch permite criar um lote, monitorar o status do job e conferir os resultados do lote.
No momento, não há compatibilidade para upload e download. Em vez disso, o exemplo a seguir usa o cliente genai para fazer upload e download de arquivos, assim como ao usar a API Batch do Gemini.
Python
from openai import OpenAI
# Regular genai client for uploads & downloads
from google import genai
client = genai.Client()
openai_client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Upload the JSONL file in OpenAI input format, using regular genai SDK
uploaded_file = client.files.upload(
    file='my-batch-requests.jsonl',
    config=types.UploadFileConfig(display_name='my-batch-requests', mime_type='jsonl')
)
# Create batch
batch = openai_client.batches.create(
    input_file_id=batch_input_file_id,
    endpoint="/v1/chat/completions",
    completion_window="24h"
)
# Wait for batch to finish (up to 24h)
while True:
    batch = client.batches.retrieve(batch.id)
    if batch.status in ('completed', 'failed', 'cancelled', 'expired'):
        break
    print(f"Batch not finished. Current state: {batch.status}. Waiting 30 seconds...")
    time.sleep(30)
print(f"Batch finished: {batch}")
# Download results in OpenAI output format, using regular genai SDK
file_content = genai_client.files.download(file=batch.output_file_id).decode('utf-8')
# See batch_output JSONL in OpenAI output format
for line in file_content.splitlines():
    print(line)    
O SDK da OpenAI também é compatível com a geração de incorporações com a API Batch. Para fazer isso, troque o campo endpoint do método
create por um endpoint de incorporações, bem como as chaves
url e model no arquivo JSONL:
# JSONL file using embeddings model and endpoint
# {"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "ggemini-embedding-001", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
# {"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "gemini-embedding-001", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
# ...
# Create batch step with embeddings endpoint
batch = openai_client.batches.create(
    input_file_id=batch_input_file_id,
    endpoint="/v1/embeddings",
    completion_window="24h"
)
Consulte a seção Geração de incorporação em lote do livro de receitas de compatibilidade com a OpenAI para ver um exemplo completo.
extra_body
Há vários recursos compatíveis com o Gemini que não estão disponíveis nos modelos da OpenAI, mas podem ser ativados usando o campo extra_body.
Recursos do extra_body
| cached_content | Corresponde ao GenerateContentRequest.cached_contentdo Gemini. | 
| thinking_config | Corresponde ao ThinkingConfigdo Gemini. | 
cached_content
Confira um exemplo de como usar extra_body para definir cached_content:
Python
from openai import OpenAI
client = OpenAI(
    api_key=MY_API_KEY,
    base_url="https://generativelanguage.googleapis.com/v1beta/"
)
stream = client.chat.completions.create(
    model="gemini-2.5-pro",
    n=1,
    messages=[
        {
            "role": "user",
            "content": "Summarize the video"
        }
    ],
    stream=True,
    stream_options={'include_usage': True},
    extra_body={
        'extra_body':
        {
            'google': {
              'cached_content': "cachedContents/0000aaaa1111bbbb2222cccc3333dddd4444eeee"
          }
        }
    }
)
for chunk in stream:
    print(chunk)
    print(chunk.usage.to_dict())
Listar modelos
Confira uma lista dos modelos do Gemini disponíveis:
Python
from openai import OpenAI
client = OpenAI(
  api_key="GEMINI_API_KEY",
  base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
models = client.models.list()
for model in models:
  print(model.id)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
  const list = await openai.models.list();
  for await (const model of list) {
    console.log(model);
  }
}
main();
REST
curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"
Recuperar um modelo
Recuperar um modelo do Gemini:
Python
from openai import OpenAI
client = OpenAI(
  api_key="GEMINI_API_KEY",
  base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
model = client.models.retrieve("gemini-2.0-flash")
print(model.id)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
  const model = await openai.models.retrieve("gemini-2.0-flash");
  console.log(model.id);
}
main();
REST
curl https://generativelanguage.googleapis.com/v1beta/openai/models/gemini-2.0-flash \
-H "Authorization: Bearer GEMINI_API_KEY"
Limitações atuais
O suporte às bibliotecas da OpenAI ainda está em versão Beta enquanto ampliamos a compatibilidade de recursos.
Se tiver dúvidas sobre parâmetros compatíveis, recursos futuros ou problemas ao começar a usar o Gemini, participe do nosso fórum para desenvolvedores.
A seguir
Teste nosso Colab de compatibilidade com a OpenAI para conferir exemplos mais detalhados.