エンベディングを使用したドキュメント検索

ai.google.dev で表示 Colab ノートブックを試す GitHub のノートブックを表示

概要

この例では、ドキュメント検索を実行できるように、Gemini API を使用してエンベディングを作成する方法を示します。Python クライアント ライブラリを使用して、検索文字列(質問)をドキュメントの内容と比較できる単語のエンベディングを作成します。

このチュートリアルでは、エンベディングを使用して一連のドキュメントに対してドキュメント検索を実行し、Google の自動車に関する質問を行います。

前提条件

このクイックスタートは Google Colab で実行できます。

独自の開発環境でこのクイックスタートを完了するには、環境が次の要件を満たしていることを確認してください。

  • Python 3.9 以降
  • ノートブックを実行するための jupyter のインストール。

セットアップ

まず、Gemini API Python ライブラリをダウンロードしてインストールします。

pip install -U -q google.generativeai
import textwrap
import numpy as np
import pandas as pd

import google.generativeai as genai

# Used to securely store your API key
from google.colab import userdata

from IPython.display import Markdown

API キーを取得

Gemini API を使用するには、まず API キーを取得する必要があります。キーをまだ作成していない場合は、Google AI Studio でワンクリックで作成できます。

API キーを取得する

Colab で、シークレット マネージャーに鍵を追加する「メンズ」を使用します。をクリックします。API_KEY という名前を付けます。

API キーを取得したら、SDK に渡します。作成する方法は次の 2 つです。

  • 鍵を GOOGLE_API_KEY 環境変数に設定します(SDK はそこから自動的に取得します)。
  • 鍵を genai.configure(api_key=...) に渡す
で確認できます。
genai.configure(api_key=GOOGLE_API_KEY)
for m in genai.list_models():
  if 'embedContent' in m.supported_generation_methods:
    print(m.name)
models/embedding-001
models/embedding-001

エンベディング生成

このセクションでは、Gemini API のエンベディングを使用してテキストのエンベディングを生成する方法について説明します。

モデル embedding-001 によるエンべディングの API の変更

新しいエンベディング モデル embedding-001 には、新しいタスクタイプ パラメータとオプションのタイトルがあります(task_type=RETRIEVAL_DOCUMENT の場合のみ有効です)。

これらの新しいパラメータは、最新のエンベディング モデルにのみ適用されます。タスクの種類は次のとおりです。

タスクの種類 説明
RETRIEVAL_QUERY 指定したテキストが検索 / 取得設定のクエリであることを指定します。
RETRIEVAL_DOCUMENT 指定したテキストが検索 / 取得設定のドキュメントであることを指定します。
SEMANTIC_SIMILARITY 指定したテキストが意味論的テキスト類似性(STS)で使用されることを指定します。
分類 エンベディングを分類に使用することを指定します。
クラスタリング エンベディングをクラスタリングに使用することを指定します。
title = "The next generation of AI for developers and Google Workspace"
sample_text = ("Title: The next generation of AI for developers and Google Workspace"
    "\n"
    "Full article:\n"
    "\n"
    "Gemini API & Google AI Studio: An approachable way to explore and prototype with generative AI applications")

model = 'models/embedding-001'
embedding = genai.embed_content(model=model,
                                content=sample_text,
                                task_type="retrieval_document",
                                title=title)

print(embedding)
{'embedding': [0.034585103, -0.044509504, -0.027291223, 0.0072681927, 0.061689284, 0.03362112, 0.028627988, 0.022681564, 0.04958079, 0.07274552, 0.011150464, 0.04200501, -0.029782884, -0.0041767005, 0.05074771, -0.056339227, 0.051204756, 0.04734613, -0.022025354, 0.025162602, 0.046016376, -0.003416976, -0.024010269, -0.044340927, -0.01520864, -0.013577372, -0.009918958, -0.028144406, -0.00024770075, 0.031201784, -0.072506696, 0.022366496, -0.032672316, -0.0025522006, -0.0019957912, -0.023193765, -0.020633291, -0.014031609, -0.00071676675, -0.0073200124, 0.014770645, -0.09390713, -0.017846372, 0.032825496, 0.017616265, -0.046674345, 0.03469292, 0.03386835, 0.0028274113, -0.07737739, 0.023789782, 0.025950644, 0.06952142, -0.029875675, -0.018693604, 0.007266584, -0.0067282487, 0.000802912, 0.020609016, 0.012406181, -0.018825717, 0.051171597, -0.0080359895, 0.008457639, 0.01197146, -0.080320396, -0.040698495, 0.0018266322, 0.042915005, 0.021464704, 0.022519842, 0.0059912056, 0.050887667, -0.04566639, -0.012651369, -0.14023173, -0.0274054, 0.04492792, 0.014709818, 0.037258334, -0.021294944, -0.041852854, -0.069640376, -0.030281356, -0.0070775123, 0.019886682, -0.050179508, -0.03839318, -0.014652514, 0.03370254, -0.02803748, -0.059206057, 0.055928297, -0.034912255, -0.007784368, 0.098106734, -0.06873356, -0.052850258, -0.011798939, -0.030071719, -0.026038093, 0.016752971, -0.020916667, 0.007365556, 0.017650642, 0.006677715, -0.036498126, 0.02110524, -0.05625146, 0.043038886, -0.06515849, -0.019825866, -0.010379261, -0.037537806, 0.017674655, -0.042821705, 0.014320703, 0.036735073, 0.011445211, 0.027352763, -0.0028090556, 0.009011982, 0.024146665, 0.002215841, -0.07397819, 0.008714616, -0.03377923, 0.034349587, 0.022429721, 0.052665956, -0.0021583177, -0.040462274, -0.019938014, 0.030099798, 0.009743918, 0.009111553, 0.026379738, -0.015910586, 0.010171418, 0.023996552, -0.031924065, 0.024775924, 0.014129728, 0.008913726, -0.010156162, 0.05407575, -0.080851324, 0.022005167, 0.012674272, -0.017213775, -0.009514327, 0.03276702, -0.06795425, -0.0004906647, 0.036379207, 0.034329377, -0.037122324, 0.05565231, -0.0038797501, 0.009620726, 0.050033607, 0.0084967585, 0.050638147, 0.00490447, 0.006675041, -0.04295331, -0.006490465, 0.010016808, -0.011493882, 0.023702862, 0.029825455, 0.03514081, -0.013388401, -0.05283049, 0.00019729362, -0.05095579, -0.031205554, 0.0045187837, -0.0066217924, -0.007931168, -0.0030577614, -0.016934164, 0.04188085, 0.050768845, 0.009407336, -0.02838461, 0.079967216, -0.038705315, -0.06723827, 0.015558192, -0.043977134, -0.022096274, -0.0053875325, -0.022216668, 0.013843675, 0.04506347, 0.051535256, 0.033484843, 0.044276737, -0.01299742, 0.021727907, 0.06798745, 0.038896713, 0.0023941514, 0.00815586, 0.029679826, 0.109524906, 0.012102062, -0.058510404, 0.03252702, -0.050666984, -0.006376317, 0.026164565, 0.008671174, 0.05052107, -0.027606683, 0.005126455, -0.0029112308, -0.015136989, -0.026336055, -0.031090762, 0.01717387, -0.03679281, -0.008987327, -0.0015111889, 0.0951955, -0.047756936, 0.03215895, 0.0029104433, -0.026967648, 0.015690766, 0.072443135, 0.039804243, 0.019212538, 0.08688796, -0.006074699, 0.015716698, 0.01919827, 0.030602958, 0.008902454, -0.046521842, 0.01976686, 0.051571846, 0.022742877, -0.04307271, -0.016526582, -0.03293306, 0.056195326, 0.0034229455, 0.022546848, -0.03803692, -0.051709678, 0.006613695, -0.0014020284, -0.036669895, -0.001721542, -0.08655083, -0.052215993, -0.032110028, 0.02565277, 0.04519586, -0.049954705, 0.0012014605, -0.037857044, -0.017148033, -0.026822135, 0.031737078, 0.028569039, -0.022907747, 0.024690803, -0.029206393, -0.032036074, 0.039650604, 0.021772616, -0.021436188, 0.045968816, -0.010048652, 0.030124044, 0.03935015, -0.04809066, 0.023686275, 0.02167442, 0.044297505, -0.073465124, -0.030082388, 0.017143175, -0.03342189, -0.0330694, -0.0122910105, -0.051963367, -0.058639623, -0.008972449, -0.022521269, -0.022892935, -0.035436112, 0.0034948539, -0.005295366, 0.05993406, 0.027561562, -0.010693112, 0.0009929353, -0.08425568, -0.02769792, -0.061596338, 0.036154557, -0.037945468, -0.03125497, -0.030945951, 0.04039234, 0.06636523, 0.016889103, -0.003046984, -0.011618148, 0.0011459244, 0.08574449, 0.036592126, -0.051252075, 0.013240978, -0.004678898, 0.0855428, -0.009402003, 0.028451374, -0.020148227, 0.0028894239, -0.02822095, 0.0315999, -0.057231728, 0.0004925584, -0.019411521, 0.021964703, 0.009169671, 0.01635917, -0.035817493, 0.052273333, -0.0009408905, 0.018396556, -0.041456044, 0.019532038, -0.0034153357, -0.034743972, 0.0027093922, 0.00044865624, 0.0023108325, -0.04501131, 0.05044232, -0.034571823, -0.039061558, 0.008809692, 0.068560965, 0.015274846, 0.023746625, 0.043649375, -0.028320875, -0.009765932, -0.009430268, -0.055888545, 0.047219332, 0.023080856, 0.064999744, -0.039562706, 0.0501819, 0.046483964, -0.009398194, -0.0013862611, 0.014837316, 0.045558825, 0.016926765, 0.03220044, 0.003780334, 0.040371794, 0.00057833333, -0.04805651, 0.01602842, -0.005916167, -0.0020399855, 0.036410075, -0.09505558, -0.021768136, 0.021421269, 0.024159726, -0.013026249, -0.023113504, 0.02459358, 0.01643742, -0.0104496805, 0.033115752, 0.047128692, 0.05519812, -0.013151745, 0.03202098, 0.0014973703, -0.009810199, 0.09950044, 0.03161514, 0.022533545, 0.028800217, 0.011425177, -0.06616128, 0.018490529, -0.024615118, -0.01714155, -0.036444064, -0.024078121, 6.236274e-05, -0.025733253, -0.012052791, -0.0032004463, -0.007022415, -0.07943268, -0.010401283, 0.014510383, -0.017218677, 0.056253612, -0.028017681, -0.06288073, -0.0010291388, 0.042233694, -0.017423663, -0.014384363, 0.008450004, -0.006025767, 0.00068278343, 0.043332722, -0.048530027, -0.10272868, 0.016439026, -0.0043581687, 0.014065921, 0.015250153, 0.0035983857, 0.024789328, 0.052941743, 0.0023809967, -0.0041563907, -0.02350335, -0.05152261, -0.026173577, 0.025396436, -0.020441707, 0.0052804356, 0.017074147, -0.023429962, 0.028667469, -0.056579348, -0.045674913, -0.050122924, -0.029717976, 0.011392094, 0.01918305, -0.090463236, 0.011211278, -0.058831867, -0.027594091, -0.08303421, -0.014075257, -0.013071177, 0.0050326143, 0.024727797, -0.004616583, -0.007565293, 0.0043535405, -0.05543633, -0.022187654, -0.026209656, 0.064442314, -0.0066669765, -0.002169784, -0.019930722, 4.8227314e-05, -0.0015547068, -0.0057820054, -0.08949447, -0.0115463175, -0.026195917, -0.008628893, -0.0017553791, -0.08588936, 0.008043627, -0.040522296, -0.006249298, -0.040554754, 0.021548215, 0.049422685, -0.008809529, -0.024933426, -0.040077355, 0.038274486, 0.029687686, -0.02959238, 0.0426982, 0.029072417, 0.049369767, -0.018109215, -0.041628513, -0.005594527, 0.026668772, -0.027726736, 0.037220005, 0.058132544, 0.01863369, -0.04707943, -0.0006536238, -0.012569923, 0.01520091, 0.05510794, -0.05035494, 0.036055118, -0.020710817, -0.0051193447, -0.042542584, 0.0020174137, 0.0014168078, -0.001090868, -0.034683146, 0.06309216, -0.05918888, 0.017469395, 0.025378557, 0.046790935, 0.008669848, 0.07935556, -0.016844809, -0.08596125, -0.037868172, 0.0057407417, -0.04262457, 0.0036744277, -0.04798243, 0.010448024, 0.005311227, -0.025689157, 0.051566023, -0.053452246, -0.033347856, -0.014070289, -0.001457106, 0.056622982, -0.037253298, -0.0010763579, 0.025846632, -0.017852046, -0.035092466, 0.0293208, 0.035001587, -0.002458465, -0.0032884434, -0.011247537, -0.03308368, 0.027546775, -0.0197189, -0.019373588, 0.012695445, -0.00846602, 0.0006254506, 0.022446852, -0.021224227, -0.016343568, -0.008488644, 0.009065775, -0.0038449552, -0.036945608, 0.035750583, 0.0021798566, 0.007781292, 0.07929656, -0.017595762, -0.020934578, -0.03354823, 0.04495828, -0.008365722, -0.040300835, 0.0006642716, 0.0568309, 0.016416628, 0.0722137, -0.01774583, -0.0492021, -0.0020490142, -0.049469862, 0.043543257, 0.04398881, 0.025031362, -0.0063477345, 0.062346347, -0.040481493, -0.02257938, 0.009280532, 0.010731656, 0.02230327, 0.002849086, -0.05473455, 0.047677275, -0.02363733, 0.029837264, -0.020835804, -0.017142115, 0.006764067, -0.01684698, 0.021653073, 0.040238675, -0.018611673, -0.04561582, 0.038430944, -0.02677326, 0.007663415, 0.06948015, -0.0012032362, 0.008699309, 0.011357286, 0.021917833, 0.00018160013, -0.076829135, 0.0023802964, -0.023293033, -0.03534673, -0.042327877, -0.0210994, 0.042625647, -0.014360755, -0.0066886684, 0.03561479, 0.047778953, 0.037118394, 0.041420408, 0.052272875, 0.039208084, -0.033506226, -0.00651392, 0.062439967, 0.03669325, 0.042872086, 0.066822834, -0.0068043126, -0.021161819, -0.050757803, 0.005068388, -0.0027463334, 0.013415453, -0.033819556, -0.046399325, -0.03287996, -0.019854786, -0.0070042396, -0.00042829785, -0.036087025, -0.00650163, 0.0008774728, -0.10458266, -0.061043933, 0.016721264, 0.0002953045, -0.0053018867, 0.012741255, 0.0050292304, 0.024298942, 0.0033208653, -0.0629338, -0.0005545099, 0.04004244, -0.03548021, -0.02479493, 0.035712432, -0.017079322, -0.030503469, 0.0019789268, -0.028768733, -0.054890547, -0.08133776, -0.03006806, -0.016685534, -0.073403284, 0.05233739, 0.033545494, 0.0035976092, 0.040786255, 0.056786384, 0.013151219, 0.042795595, 0.009594162, 0.00945792, 0.024018744, -0.045365516, -0.050492898, 0.038503986, 0.012790262, 0.0142914, 0.014998696, 0.0071202153, -0.0038871064, 0.010770397, 0.016789515, -0.041323792, 0.010311674, -0.009053558, 0.034749016, 0.005213924, -0.041184388, -0.0033388685, 0.04279652, 0.04068113, -0.024129236, -0.0059263078, 0.027970677, -0.024706231, 0.02846046, -0.0011169978, -0.059880134, 0.02713591, -0.0027713599, 0.040187914, 0.035978075, -0.06281134, -0.08345513, -0.006073032, -0.02095529, -0.018988023, -0.035680003, 0.04972727, -0.009011115, 0.054317664, 0.005172075, 0.031131523, -0.00069823023, 0.0108121475, -0.06091403, 0.049459387, -0.007036548, -0.014955144, -0.02104843, 0.035405546, 0.043375615, -0.042294793, -0.025417345, -0.015245514, 0.023398506, 0.002263163, -0.0071430253, 0.043531902, -0.03357511, -0.09097121, -0.04729407, -0.013593756, 0.023449646, 0.039015424, 0.027113337, -0.05169247, -0.016909705, -0.0057588373, -0.009955609, -0.05562937, -0.052671663, 0.003173363, -0.0022836009, 0.036742315, 0.047324646, -0.033285677, 0.012819869, -0.01939692, -0.0047737034, -0.011794656, -0.045633573, -0.0013346534, 0.016130142, -0.066292875, 0.029637614, 0.057662483, -0.035122138, 0.068166904]}

エンベディング データベースの構築

ここでは、エンベディング データベースの構築に使用する 3 つのサンプル テキストを示します。Gemini API を使用して、各ドキュメントのエンベディングを作成します。データをデータフレームに変換して可視化する。

DOCUMENT1 = {
    "title": "Operating the Climate Control System",
    "content": "Your Googlecar has a climate control system that allows you to adjust the temperature and airflow in the car. To operate the climate control system, use the buttons and knobs located on the center console.  Temperature: The temperature knob controls the temperature inside the car. Turn the knob clockwise to increase the temperature or counterclockwise to decrease the temperature. Airflow: The airflow knob controls the amount of airflow inside the car. Turn the knob clockwise to increase the airflow or counterclockwise to decrease the airflow. Fan speed: The fan speed knob controls the speed of the fan. Turn the knob clockwise to increase the fan speed or counterclockwise to decrease the fan speed. Mode: The mode button allows you to select the desired mode. The available modes are: Auto: The car will automatically adjust the temperature and airflow to maintain a comfortable level. Cool: The car will blow cool air into the car. Heat: The car will blow warm air into the car. Defrost: The car will blow warm air onto the windshield to defrost it."}
DOCUMENT2 = {
    "title": "Touchscreen",
    "content": "Your Googlecar has a large touchscreen display that provides access to a variety of features, including navigation, entertainment, and climate control. To use the touchscreen display, simply touch the desired icon.  For example, you can touch the \"Navigation\" icon to get directions to your destination or touch the \"Music\" icon to play your favorite songs."}
DOCUMENT3 = {
    "title": "Shifting Gears",
    "content": "Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions."}

documents = [DOCUMENT1, DOCUMENT2, DOCUMENT3]

辞書の内容をデータフレームに整理して可視化しやすくする。

df = pd.DataFrame(documents)
df.columns = ['Title', 'Text']
df

それぞれのテキスト本文のエンベディングを取得する。この情報をデータフレームに追加します。

# Get the embeddings of each text and add to an embeddings column in the dataframe
def embed_fn(title, text):
  return genai.embed_content(model=model,
                             content=text,
                             task_type="retrieval_document",
                             title=title)["embedding"]

df['Embeddings'] = df.apply(lambda row: embed_fn(row['Title'], row['Text']), axis=1)
df

Q&A によるドキュメント検索

エンベディングが生成されたので、これらのドキュメントを検索する Q&A システムを作成しましょう。ハイパーパラメータ調整について質問し、質問のエンベディングを作成して、DataFrame 内のエンベディングのコレクションと比較します。

問題のエンベディングはベクトル(浮動小数点値のリスト)になり、ドット積を使用してドキュメントのベクトルと比較されます。API から返されたこのベクトルはすでに正規化されています。ドット積は、2 つのベクトル間の方向の類似性を表します。

ドット積の値は -1 ~ 1 の範囲になります。2 つのベクトル間のドット積が 1 の場合、ベクトルは同じ方向にあります。ドット積値が 0 の場合、これらのベクトルは互いに直交しているか、無関係です。最後に、ドット積が -1 の場合、ベクトルは逆方向を指しており、互いに類似していません。

新しいエンベディング モデル(embedding-001)では、ユーザークエリではタスクタイプを QUERY、ドキュメント テキストのエンベディングでは DOCUMENT として指定します。

タスクの種類 説明
RETRIEVAL_QUERY 指定したテキストが検索 / 取得設定のクエリであることを指定します。
RETRIEVAL_DOCUMENT 指定したテキストが検索 / 取得設定のドキュメントであることを指定します。
query = "How do you shift gears in the Google car?"
model = 'models/embedding-001'

request = genai.embed_content(model=model,
                              content=query,
                              task_type="retrieval_query")

find_best_passage 関数を使用してドット積を計算し、データフレームをドット積値の大きい順に並べ替えて、データベースから関連する文章を取得します。

def find_best_passage(query, dataframe):
  """
  Compute the distances between the query and each document in the dataframe
  using the dot product.
  """
  query_embedding = genai.embed_content(model=model,
                                        content=query,
                                        task_type="retrieval_query")
  dot_products = np.dot(np.stack(dataframe['Embeddings']), query_embedding["embedding"])
  idx = np.argmax(dot_products)
  return dataframe.iloc[idx]['Text'] # Return text from index with max value

データベースから最も関連性の高いドキュメントを表示します。

passage = find_best_passage(query, df)
passage
'Shifting Gears  Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions.'

質問応答アプリケーション

では、テキスト生成 API を使用して Q&A コードをシステム。以下に独自のカスタムデータを入力して、簡単な質問と回答の例を作成します。類似度の指標としてドット積を引き続き使用します。

def make_prompt(query, relevant_passage):
  escaped = relevant_passage.replace("'", "").replace('"', "").replace("\n", " ")
  prompt = textwrap.dedent("""You are a helpful and informative bot that answers questions using text from the reference passage included below. \
  Be sure to respond in a complete sentence, being comprehensive, including all relevant background information. \
  However, you are talking to a non-technical audience, so be sure to break down complicated concepts and \
  strike a friendly and converstional tone. \
  If the passage is irrelevant to the answer, you may ignore it.
  QUESTION: '{query}'
  PASSAGE: '{relevant_passage}'

    ANSWER:
  """).format(query=query, relevant_passage=escaped)

  return prompt
prompt = make_prompt(query, passage)
print(prompt)
You are a helpful and informative bot that answers questions using text from the reference passage included below.   Be sure to respond in a complete sentence, being comprehensive, including all relevant background information.   However, you are talking to a non-technical audience, so be sure to break down complicated concepts and   strike a friendly and converstional tone.   If the passage is irrelevant to the answer, you may ignore it.
  QUESTION: 'How do you shift gears in the Google car?'
  PASSAGE: 'Shifting Gears  Your Googlecar has an automatic transmission. To shift gears, simply move the shift lever to the desired position.  Park: This position is used when you are parked. The wheels are locked and the car cannot move. Reverse: This position is used to back up. Neutral: This position is used when you are stopped at a light or in traffic. The car is not in gear and will not move unless you press the gas pedal. Drive: This position is used to drive forward. Low: This position is used for driving in snow or other slippery conditions.'

    ANSWER:

いずれかの Gemini コンテンツ生成モデルを選択して、クエリの答えを見つけてください。

for m in genai.list_models():
  if 'generateContent' in m.supported_generation_methods:
    print(m.name)
models/gemini-pro
models/gemini-ultra
model = genai.GenerativeModel('gemini-1.5-pro-latest')
answer = model.generate_content(prompt)
Markdown(answer.text)

提供された文章には、Google の自動車のギアシフト方法に関する情報が含まれていないため、このソースからの質問に回答することはできません。

次のステップ

エンベディングの使用方法について詳しくは、以下のチュートリアルをご覧ください。