Créer des graphiques en C++

Le générateur de graphiques C++ est un outil puissant pour:

  • Créer des graphiques complexes
  • Paramétrer les graphiques (par exemple, définir un délégué sur InferenceCalculator, activation/désactivation de certaines parties du graphique)
  • Dédupliquer des graphiques (par exemple, à la place des graphiques dédiés au processeur et au GPU dans le fichier pbtxt) vous pouvez avoir un seul code pour construire les graphiques nécessaires, en partageant autant que possible)
  • Prise en charge des entrées/sorties de graphe facultatives
  • Personnaliser les graphiques par plate-forme

Utilisation de base

Voyons comment utiliser le compilateur de graphes C++ pour un graphique simple:

# Graph inputs.
input_stream: "input_tensors"
input_side_packet: "model"

# Graph outputs.
output_stream: "output_tensors"

node {
  calculator: "InferenceCalculator"
  input_stream: "TENSORS:input_tensors"
  input_side_packet: "MODEL:model"
  output_stream: "TENSORS:output_tensors"
  options: {
    [drishti.InferenceCalculatorOptions.ext] {
      # Requesting GPU delegate.
      delegate { gpu {} }
    }
  }
}

La fonction permettant de créer l'élément CalculatorGraphConfig ci-dessus peut se présenter comme suit:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<std::vector<Tensor>> input_tensors =
      graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
  SidePacket<TfLiteModelPtr> model =
      graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

  auto& inference_node = graph.AddNode("InferenceCalculator");
  auto& inference_opts =
      inference_node.GetOptions<InferenceCalculatorOptions>();
  // Requesting GPU delegate.
  inference_opts.mutable_delegate()->mutable_gpu();
  input_tensors.ConnectTo(inference_node.In("TENSORS"));
  model.ConnectTo(inference_node.SideIn("MODEL"));
  Stream<std::vector<Tensor>> output_tensors =
      inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();

  // Graph outputs.
  output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

En bref:

  • Utiliser Graph::In/SideIn pour obtenir des entrées de graphe en tant que Stream/SidePacket
  • Utiliser Node::Out/SideOut pour obtenir les sorties de nœuds en tant que Stream/SidePacket
  • Utiliser Stream/SidePacket::ConnectTo pour connecter les flux et les paquets secondaires à entrées de nœuds (Node::In/SideIn) et sorties du graphe (Graph::Out/SideOut) <ph type="x-smartling-placeholder">
      </ph>
    • Il y a un "raccourci" l'opérateur >> que vous pouvez utiliser à la place Fonction ConnectTo (par exemple, x >> node.In("IN")).
  • Stream/SidePacket::Cast permet de caster le flux ou le paquet secondaire de AnyType. (par exemple, Stream<AnyType> in = graph.In(0);) vers un type particulier. <ph type="x-smartling-placeholder">
      </ph>
    • L'utilisation de types réels au lieu de AnyType vous offre une meilleure voie pour Exploiter les capacités du générateur de graphiques et améliorer vos graphiques la lisibilité.

Utilisation avancée

Fonctions de l'utilitaire

Nous allons extraire le code de construction d'inférence dans une fonction utilitaire dédiée pour pour faciliter la lisibilité et réutiliser le code:

// Updates graph to run inference.
Stream<std::vector<Tensor>> RunInference(
    Stream<std::vector<Tensor>> tensors, SidePacket<TfLiteModelPtr> model,
    const InferenceCalculatorOptions::Delegate& delegate, Graph& graph) {
  auto& inference_node = graph.AddNode("InferenceCalculator");
  auto& inference_opts =
      inference_node.GetOptions<InferenceCalculatorOptions>();
  *inference_opts.mutable_delegate() = delegate;
  tensors.ConnectTo(inference_node.In("TENSORS"));
  model.ConnectTo(inference_node.SideIn("MODEL"));
  return inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<std::vector<Tensor>> input_tensors =
      graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
  SidePacket<TfLiteModelPtr> model =
      graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

  InferenceCalculatorOptions::Delegate delegate;
  delegate.mutable_gpu();
  Stream<std::vector<Tensor>> output_tensors =
      RunInference(input_tensors, model, delegate, graph);

  // Graph outputs.
  output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

  return graph.GetConfig();
}

Par conséquent, RunInference fournit une interface claire indiquant quelles sont les et leurs types.

Il peut être facilement réutilisé, par exemple il ne s'agit que de quelques lignes si vous souhaitez exécuter inférence de modèle:

  // Run first inference.
  Stream<std::vector<Tensor>> output_tensors =
      RunInference(input_tensors, model, delegate, graph);
  // Run second inference on the output of the first one.
  Stream<std::vector<Tensor>> extra_output_tensors =
      RunInference(output_tensors, extra_model, delegate, graph);

De plus, vous n'avez pas besoin de dupliquer les noms et les balises (InferenceCalculator, TENSORS ou MODEL) ou introduire des constantes dédiées ici et là, les détails sont localisés pour la fonction RunInference.

Classes utilitaires

Il ne s'agit pas seulement de fonctions. Dans certains cas, introduisez des classes utilitaires qui peuvent vous aider à créer votre code de construction de graphe plus lisibles et moins sujettes aux erreurs.

MediaPipe propose un calculateur PassThroughCalculator, qui transmet simplement via ses entrées:

input_stream: "float_value"
input_stream: "int_value"
input_stream: "bool_value"

output_stream: "passed_float_value"
output_stream: "passed_int_value"
output_stream: "passed_bool_value"

node {
  calculator: "PassThroughCalculator"
  input_stream: "float_value"
  input_stream: "int_value"
  input_stream: "bool_value"
  # The order must be the same as for inputs (or you can use explicit indexes)
  output_stream: "passed_float_value"
  output_stream: "passed_int_value"
  output_stream: "passed_bool_value"
}

Examinons le code de construction C++ simple permettant de créer le graphique ci-dessus:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
  Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
  Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

  auto& pass_node = graph.AddNode("PassThroughCalculator");
  float_value.ConnectTo(pass_node.In("")[0]);
  int_value.ConnectTo(pass_node.In("")[1]);
  bool_value.ConnectTo(pass_node.In("")[2]);
  Stream<float> passed_float_value = pass_node.Out("")[0].Cast<float>();
  Stream<int> passed_int_value = pass_node.Out("")[1].Cast<int>();
  Stream<bool> passed_bool_value = pass_node.Out("")[2].Cast<bool>();

  // Graph outputs.
  passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
  passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
  passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Bien que la représentation pbtxt soit susceptible d'être sujette à erreur (lorsque nous avons de nombreuses entrées à transmettre le code C++ est encore pire: balises vides répétées et appels Cast. Voyons comment nous pouvons nous améliorer en introduisant un PassThroughNodeBuilder:

class PassThroughNodeBuilder {
 public:
  explicit PassThroughNodeBuilder(Graph& graph)
      : node_(graph.AddNode("PassThroughCalculator")) {}

  template <typename T>
  Stream<T> PassThrough(Stream<T> stream) {
    stream.ConnectTo(node_.In(index_));
    return node_.Out(index_++).Cast<T>();
  }

 private:
  int index_ = 0;
  GenericNode& node_;
};

Le code de construction d'un graphique peut maintenant se présenter comme suit:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
  Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
  Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

  PassThroughNodeBuilder pass_node_builder(graph);
  Stream<float> passed_float_value = pass_node_builder.PassThrough(float_value);
  Stream<int> passed_int_value = pass_node_builder.PassThrough(int_value);
  Stream<bool> passed_bool_value = pass_node_builder.PassThrough(bool_value);

  // Graph outputs.
  passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
  passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
  passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Votre passage au cours de la construction ne doit pas comporter d'ordre ni d'index incorrects. code et gagnez du temps en devinant le type de Cast à partir de PassThrough saisie.

Choses à faire et à ne pas faire

Si possible, définissez les entrées du graphe au tout début

Dans le code ci-dessous:

  • Il peut être difficile de deviner le nombre d'entrées présentes dans le graphique.
  • Il peut être globalement sujet aux erreurs et difficile à gérer à l'avenir (par exemple, s'il s'agit-il d'un l'index correct ? son nom ? que se passe-t-il si certaines entrées sont supprimées ou rendues facultatives ? etc.).
  • La réutilisation de RunSomething est limitée, car d'autres graphiques peuvent présenter des différences entrées

À ÉVITER : exemple de code incorrect.

Stream<D> RunSomething(Stream<A> a, Stream<B> b, Graph& graph) {
  Stream<C> c = graph.In(2).SetName("c").Cast<C>();  // Bad.
  // ...
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  Stream<A> a = graph.In(0).SetName("a").Cast<A>();
  // 10/100/N lines of code.
  Stream<B> b = graph.In(1).SetName("b").Cast<B>()  // Bad.
  Stream<D> d = RunSomething(a, b, graph);
  // ...

  return graph.GetConfig();
}

Définissez plutôt les entrées de graphe au tout début de votre outil de création de graphiques:

À FAIRE : un exemple de code efficace.

Stream<D> RunSomething(Stream<A> a, Stream<B> b, Stream<C> c, Graph& graph) {
  // ...
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).SetName("a").Cast<A>();
  Stream<B> b = graph.In(1).SetName("b").Cast<B>();
  Stream<C> c = graph.In(2).SetName("c").Cast<C>();

  // 10/100/N lines of code.
  Stream<D> d = RunSomething(a, b, c, graph);
  // ...

  return graph.GetConfig();
}

Utilisez std::optional si vous avez un flux d'entrée ou un paquet secondaire qui n'est pas toujours définie et la placer au tout début:

À FAIRE : un exemple de code efficace.

std::optional<Stream<A>> a;
if (needs_a) {
  a = graph.In(0).SetName(a).Cast<A>();
}

Définir les sorties du graphique à la toute fin

Dans le code ci-dessous:

  • Il peut être difficile de deviner le nombre de résultats présents dans le graphique.
  • Il peut être globalement sujet aux erreurs et difficile à gérer à l'avenir (par exemple, s'il s'agit-il d'un l'index correct ? son nom ? que se passe-t-il si certains sorties sont supprimées ou rendues facultatives ? etc.).
  • La réutilisation de RunSomething est limitée, car d'autres graphiques peuvent avoir des résultats différents

À ÉVITER : exemple de code incorrect.

void RunSomething(Stream<Input> input, Graph& graph) {
  // ...
  node.Out("OUTPUT_F")
      .SetName("output_f").ConnectTo(graph.Out(2));  // Bad.
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // 10/100/N lines of code.
  node.Out("OUTPUT_D")
      .SetName("output_d").ConnectTo(graph.Out(0));  // Bad.
  // 10/100/N lines of code.
  node.Out("OUTPUT_E")
      .SetName("output_e").ConnectTo(graph.Out(1));  // Bad.
  // 10/100/N lines of code.
  RunSomething(input, graph);
  // ...

  return graph.GetConfig();
}

Définissez plutôt les sorties de graphiques à la toute fin de votre générateur de graphiques:

À FAIRE : un exemple de code efficace.

Stream<F> RunSomething(Stream<Input> input, Graph& graph) {
  // ...
  return node.Out("OUTPUT_F").Cast<F>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // 10/100/N lines of code.
  Stream<D> d = node.Out("OUTPUT_D").Cast<D>();
  // 10/100/N lines of code.
  Stream<E> e = node.Out("OUTPUT_E").Cast<E>();
  // 10/100/N lines of code.
  Stream<F> f = RunSomething(input, graph);
  // ...

  // Outputs.
  d.SetName("output_d").ConnectTo(graph.Out(0));
  e.SetName("output_e").ConnectTo(graph.Out(1));
  f.SetName("output_f").ConnectTo(graph.Out(2));

  return graph.GetConfig();
}

Maintenir la dissociation des nœuds les uns des autres

Dans MediaPipe, les flux de paquets et les paquets secondaires ont la même signification que le traitement nœuds. Toutes les exigences d'entrée des nœuds et tous les produits de sortie sont clairement définis indépendamment des flux et des paquets secondaires qu'il consomme produit.

À ÉVITER : exemple de code incorrect.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));

  auto& node2 = graph.AddNode("Calculator2");
  node1.Out("OUTPUT").ConnectTo(node2.In("INPUT"));  // Bad.

  auto& node3 = graph.AddNode("Calculator3");
  node1.Out("OUTPUT").ConnectTo(node3.In("INPUT_B"));  // Bad.
  node2.Out("OUTPUT").ConnectTo(node3.In("INPUT_C"));  // Bad.

  auto& node4 = graph.AddNode("Calculator4");
  node1.Out("OUTPUT").ConnectTo(node4.In("INPUT_B"));  // Bad.
  node2.Out("OUTPUT").ConnectTo(node4.In("INPUT_C"));  // Bad.
  node3.Out("OUTPUT").ConnectTo(node4.In("INPUT_D"));  // Bad.

  // Outputs.
  node1.Out("OUTPUT").SetName("b").ConnectTo(graph.Out(0));  // Bad.
  node2.Out("OUTPUT").SetName("c").ConnectTo(graph.Out(1));  // Bad.
  node3.Out("OUTPUT").SetName("d").ConnectTo(graph.Out(2));  // Bad.
  node4.Out("OUTPUT").SetName("e").ConnectTo(graph.Out(3));  // Bad.

  return graph.GetConfig();
}

Dans le code ci-dessus:

  • Les nœuds sont couplés les uns aux autres. Exemple : node4 sait où se trouvent ses entrées. provenant de (node1, node2, node3), ce qui complique la refactorisation. la maintenance et la réutilisation du code <ph type="x-smartling-placeholder">
      </ph>
    • Ce modèle d'utilisation est une rétrogradation par rapport à la représentation proto, où les nœuds sont découplés par défaut.
  • node#.Out("OUTPUT") appels sont dupliqués, et la lisibilité s'en trouve dégradée pourraient utiliser des noms plus propres à la place et fournir également un type réel.

Ainsi, pour résoudre les problèmes ci-dessus, vous pouvez écrire le code de construction de graphique suivant:

À FAIRE : un exemple de code efficace.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  // `node1` usage is limited to 3 lines below.
  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();

  // `node2` usage is limited to 3 lines below.
  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();

  // `node3` usage is limited to 4 lines below.
  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();

  // `node4` usage is limited to 5 lines below.
  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Si nécessaire, vous pouvez facilement supprimer node1 et faire de b une entrée de graphique et non Des mises à jour sont nécessaires pour node2, node3 et node4 (comme pour la représentation proto car elles sont dissociées les unes des autres.

Dans l'ensemble, le code ci-dessus réplique plus fidèlement le graphe proto:

input_stream: "a"

node {
  calculator: "Calculator1"
  input_stream: "INPUT:a"
  output_stream: "OUTPUT:b"
}

node {
  calculator: "Calculator2"
  input_stream: "INPUT:b"
  output_stream: "OUTPUT:C"
}

node {
  calculator: "Calculator3"
  input_stream: "INPUT_B:b"
  input_stream: "INPUT_C:c"
  output_stream: "OUTPUT:d"
}

node {
  calculator: "Calculator4"
  input_stream: "INPUT_B:b"
  input_stream: "INPUT_C:c"
  input_stream: "INPUT_D:d"
  output_stream: "OUTPUT:e"
}

output_stream: "b"
output_stream: "c"
output_stream: "d"
output_stream: "e"

De plus, vous pouvez maintenant extraire des fonctions utilitaires pour les réutiliser ultérieurement dans d'autres graphiques:

À FAIRE : un exemple de code efficace.

Stream<B> RunCalculator1(Stream<A> a, Graph& graph) {
  auto& node = graph.AddNode("Calculator1");
  a.ConnectTo(node.In("INPUT"));
  return node.Out("OUTPUT").Cast<B>();
}

Stream<C> RunCalculator2(Stream<B> b, Graph& graph) {
  auto& node = graph.AddNode("Calculator2");
  b.ConnectTo(node.In("INPUT"));
  return node.Out("OUTPUT").Cast<C>();
}

Stream<D> RunCalculator3(Stream<B> b, Stream<C> c, Graph& graph) {
  auto& node = graph.AddNode("Calculator3");
  b.ConnectTo(node.In("INPUT_B"));
  c.ConnectTo(node.In("INPUT_C"));
  return node.Out("OUTPUT").Cast<D>();
}

Stream<E> RunCalculator4(Stream<B> b, Stream<C> c, Stream<D> d, Graph& graph) {
  auto& node = graph.AddNode("Calculator4");
  b.ConnectTo(node.In("INPUT_B"));
  c.ConnectTo(node.In("INPUT_C"));
  d.ConnectTo(node.In("INPUT_D"));
  return node.Out("OUTPUT").Cast<E>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  Stream<B> b = RunCalculator1(a, graph);
  Stream<C> c = RunCalculator2(b, graph);
  Stream<D> d = RunCalculator3(b, c, graph);
  Stream<E> e = RunCalculator4(b, c, d, graph);

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Séparer les nœuds pour améliorer la lisibilité

À ÉVITER : exemple de code incorrect.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();
  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();
  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();
  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();
  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();
  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Dans le code ci-dessus, il peut être difficile de comprendre où commence chaque nœud et se termine. Pour améliorer cela et aider vos lecteurs de code, il vous suffit de laisser le champ avant et après chaque nœud:

À FAIRE : un exemple de code efficace.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();

  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();

  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();

  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

De plus, la représentation ci-dessus correspond au protocole CalculatorGraphConfig une meilleure représentation.

Si vous extrayez des nœuds dans des fonctions utilitaires, ils sont limités aux fonctions et que leur début et leur fin sont clairement indiqués, ce qui est tout à fait normal ont:

À FAIRE : un exemple de code efficace.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  Stream<B> b = RunCalculator1(a, graph);
  Stream<C> c = RunCalculator2(b, graph);
  Stream<D> d = RunCalculator3(b, c, graph);
  Stream<E> e = RunCalculator4(b, c, d, graph);

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}