Tworzenie wykresów w C++

Kreator wykresów C++ to zaawansowane narzędzie do:

  • Tworzenie złożonych wykresów
  • Parametryzacja wykresów (np. ustawienie przedstawiciela w InferenceCalculator, włączenie/wyłączenie części wykresu)
  • Wykresy deduplikujące (np.zamiast wykresów dotyczących procesora i GPU w pliku pbtxt możesz mieć pojedynczy kod, który generuje wymagane wykresy, udostępniając jak najwięcej danych).
  • Obsługa opcjonalnych danych wejściowych i wyjściowych wykresu
  • Dostosowywanie wykresów według platformy

Podstawowe użycie

Zobaczmy, jak utworzyć prosty wykres za pomocą narzędzia do tworzenia wykresów C++:

# Graph inputs.
input_stream: "input_tensors"
input_side_packet: "model"

# Graph outputs.
output_stream: "output_tensors"

node {
  calculator: "InferenceCalculator"
  input_stream: "TENSORS:input_tensors"
  input_side_packet: "MODEL:model"
  output_stream: "TENSORS:output_tensors"
  options: {
    [drishti.InferenceCalculatorOptions.ext] {
      # Requesting GPU delegate.
      delegate { gpu {} }
    }
  }
}

Funkcja tworząca powyższy CalculatorGraphConfig może wyglądać tak:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<std::vector<Tensor>> input_tensors =
      graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
  SidePacket<TfLiteModelPtr> model =
      graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

  auto& inference_node = graph.AddNode("InferenceCalculator");
  auto& inference_opts =
      inference_node.GetOptions<InferenceCalculatorOptions>();
  // Requesting GPU delegate.
  inference_opts.mutable_delegate()->mutable_gpu();
  input_tensors.ConnectTo(inference_node.In("TENSORS"));
  model.ConnectTo(inference_node.SideIn("MODEL"));
  Stream<std::vector<Tensor>> output_tensors =
      inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();

  // Graph outputs.
  output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Krótkie podsumowanie:

  • Użyj operatora Graph::In/SideIn, aby wyświetlić dane wejściowe wykresu w postaci Stream/SidePacket
  • Użyj polecenia Node::Out/SideOut, aby pobierać dane wyjściowe węzłów w postaci Stream/SidePacket
  • Użyj Stream/SidePacket::ConnectTo, aby połączyć strumienie i pakiety boczne z wejściami węzła (Node::In/SideIn) i wyświetlić wykresy danych wyjściowych (Graph::Out/SideOut)
    • Dostępny jest operator „skrót” >>, którego możesz użyć zamiast funkcji ConnectTo (np. x >> node.In("IN")).
  • Funkcja Stream/SidePacket::Cast służy do rzutowania strumienia lub pakietu bocznego AnyType (np. Stream<AnyType> in = graph.In(0);) do określonego typu
    • Użycie rzeczywistych typów zamiast AnyType pomoże Ci w pełni wykorzystać możliwości narzędzia do tworzenia wykresów i poprawić czytelność wykresów.

Zaawansowane użycie

Funkcje użytkowe

Wyodrębnijmy kod konstrukcji wnioskowania do dedykowanej funkcji narzędziowej, aby zwiększyć czytelność i ponowne użycie kodu:

// Updates graph to run inference.
Stream<std::vector<Tensor>> RunInference(
    Stream<std::vector<Tensor>> tensors, SidePacket<TfLiteModelPtr> model,
    const InferenceCalculatorOptions::Delegate& delegate, Graph& graph) {
  auto& inference_node = graph.AddNode("InferenceCalculator");
  auto& inference_opts =
      inference_node.GetOptions<InferenceCalculatorOptions>();
  *inference_opts.mutable_delegate() = delegate;
  tensors.ConnectTo(inference_node.In("TENSORS"));
  model.ConnectTo(inference_node.SideIn("MODEL"));
  return inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<std::vector<Tensor>> input_tensors =
      graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
  SidePacket<TfLiteModelPtr> model =
      graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

  InferenceCalculatorOptions::Delegate delegate;
  delegate.mutable_gpu();
  Stream<std::vector<Tensor>> output_tensors =
      RunInference(input_tensors, model, delegate, graph);

  // Graph outputs.
  output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

  return graph.GetConfig();
}

Dlatego RunInference ma przejrzysty interfejs z informacjami o swoich danych wejściowych i wyjściowych oraz ich typach.

Można go łatwo użyć ponownie, np. ma tylko kilka wierszy, jeśli chcesz uruchomić dodatkowe wnioskowanie z modelu:

  // Run first inference.
  Stream<std::vector<Tensor>> output_tensors =
      RunInference(input_tensors, model, delegate, graph);
  // Run second inference on the output of the first one.
  Stream<std::vector<Tensor>> extra_output_tensors =
      RunInference(output_tensors, extra_model, delegate, graph);

Nie musisz też powielać nazw i tagów (InferenceCalculator, TENSORS, MODEL) ani wprowadzać tutaj dedykowanych stałych – te szczegóły są przetłumaczone na RunInference.

Zajęcia praktyczne

I z pewnością nie chodzi tylko o funkcje, ale w niektórych przypadkach warto wprowadzić klasy przydatności, dzięki którym kod konstrukcji grafu stanie się bardziej czytelny i mniej podatny na błędy.

MediaPipe udostępnia kalkulator PassThroughCalculator, który tylko przekazuje dane wejściowe:

input_stream: "float_value"
input_stream: "int_value"
input_stream: "bool_value"

output_stream: "passed_float_value"
output_stream: "passed_int_value"
output_stream: "passed_bool_value"

node {
  calculator: "PassThroughCalculator"
  input_stream: "float_value"
  input_stream: "int_value"
  input_stream: "bool_value"
  # The order must be the same as for inputs (or you can use explicit indexes)
  output_stream: "passed_float_value"
  output_stream: "passed_int_value"
  output_stream: "passed_bool_value"
}

Oto prosty kod konstrukcyjny w C++ pozwalający utworzyć powyższy wykres:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
  Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
  Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

  auto& pass_node = graph.AddNode("PassThroughCalculator");
  float_value.ConnectTo(pass_node.In("")[0]);
  int_value.ConnectTo(pass_node.In("")[1]);
  bool_value.ConnectTo(pass_node.In("")[2]);
  Stream<float> passed_float_value = pass_node.Out("")[0].Cast<float>();
  Stream<int> passed_int_value = pass_node.Out("")[1].Cast<int>();
  Stream<bool> passed_bool_value = pass_node.Out("")[2].Cast<bool>();

  // Graph outputs.
  passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
  passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
  passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Reprezentacja pbtxt może być podatna na błędy (gdy mamy do przekazania wiele danych wejściowych), ale kod w C++ wygląda jeszcze gorzej: powtarzające się puste tagi i wywołania Cast. Sprawdźmy, co możemy zrobić lepiej, wprowadzając PassThroughNodeBuilder:

class PassThroughNodeBuilder {
 public:
  explicit PassThroughNodeBuilder(Graph& graph)
      : node_(graph.AddNode("PassThroughCalculator")) {}

  template <typename T>
  Stream<T> PassThrough(Stream<T> stream) {
    stream.ConnectTo(node_.In(index_));
    return node_.Out(index_++).Cast<T>();
  }

 private:
  int index_ = 0;
  GenericNode& node_;
};

A teraz wykres kodu budowlanego może wyglądać tak:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
  Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
  Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

  PassThroughNodeBuilder pass_node_builder(graph);
  Stream<float> passed_float_value = pass_node_builder.PassThrough(float_value);
  Stream<int> passed_int_value = pass_node_builder.PassThrough(int_value);
  Stream<bool> passed_bool_value = pass_node_builder.PassThrough(bool_value);

  // Graph outputs.
  passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
  passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
  passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Nie możesz teraz mieć nieprawidłowej kolejności ani indeksu w kodzie konstrukcyjnym, odgadując typ obiektu Cast z danych wejściowych PassThrough.

Zalecenia i ograniczenia

W miarę możliwości zdefiniuj dane wejściowe wykresu na samym początku

W tym kodzie:

  • Odgadnięcie liczby danych wejściowych na wykresie może być trudne.
  • mogą być podatne na błędy i trudne w utrzymaniu w przyszłości (np. czy jest to prawidłowa nazwa indeksu? A co, jeśli niektóre dane wejściowe zostaną usunięte lub opcjonalne itd.).
  • Ponowne wykorzystanie elementów RunSomething jest ograniczone, ponieważ inne wykresy mogą mieć inne dane wejściowe

NIE – przykład nieprawidłowego kodu.

Stream<D> RunSomething(Stream<A> a, Stream<B> b, Graph& graph) {
  Stream<C> c = graph.In(2).SetName("c").Cast<C>();  // Bad.
  // ...
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  Stream<A> a = graph.In(0).SetName("a").Cast<A>();
  // 10/100/N lines of code.
  Stream<B> b = graph.In(1).SetName("b").Cast<B>()  // Bad.
  Stream<D> d = RunSomething(a, b, graph);
  // ...

  return graph.GetConfig();
}

Dane wejściowe wykresu należy natomiast zdefiniować na samym początku narzędzia do tworzenia wykresów:

TAK – przykład dobrego kodu.

Stream<D> RunSomething(Stream<A> a, Stream<B> b, Stream<C> c, Graph& graph) {
  // ...
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).SetName("a").Cast<A>();
  Stream<B> b = graph.In(1).SetName("b").Cast<B>();
  Stream<C> c = graph.In(2).SetName("c").Cast<C>();

  // 10/100/N lines of code.
  Stream<D> d = RunSomething(a, b, c, graph);
  // ...

  return graph.GetConfig();
}

Użyj właściwości std::optional, jeśli masz strumień wejściowy lub pakiet boczny, który nie jest zawsze zdefiniowany i umieszczony na samym początku:

TAK – przykład dobrego kodu.

std::optional<Stream<A>> a;
if (needs_a) {
  a = graph.In(0).SetName(a).Cast<A>();
}

Określ dane wyjściowe wykresu na samym końcu

W tym kodzie:

  • Odgadnięcie liczby wyników na wykresie może być trudne.
  • Mogą być podatne na błędy i trudne w utrzymaniu w przyszłości (np. czy indeks jest prawidłową nazwą indeksu? A co, jeśli niektóre dane wyjściowe zostaną usunięte lub opcjonalne itp.).
  • Wykorzystanie elementów RunSomething jest ograniczone, ponieważ inne wykresy mogą mieć inne wyniki

NIE – przykład nieprawidłowego kodu.

void RunSomething(Stream<Input> input, Graph& graph) {
  // ...
  node.Out("OUTPUT_F")
      .SetName("output_f").ConnectTo(graph.Out(2));  // Bad.
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // 10/100/N lines of code.
  node.Out("OUTPUT_D")
      .SetName("output_d").ConnectTo(graph.Out(0));  // Bad.
  // 10/100/N lines of code.
  node.Out("OUTPUT_E")
      .SetName("output_e").ConnectTo(graph.Out(1));  // Bad.
  // 10/100/N lines of code.
  RunSomething(input, graph);
  // ...

  return graph.GetConfig();
}

Dane wyjściowe wykresu należy zdefiniować na samym końcu narzędzia do tworzenia wykresów:

TAK – przykład dobrego kodu.

Stream<F> RunSomething(Stream<Input> input, Graph& graph) {
  // ...
  return node.Out("OUTPUT_F").Cast<F>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // 10/100/N lines of code.
  Stream<D> d = node.Out("OUTPUT_D").Cast<D>();
  // 10/100/N lines of code.
  Stream<E> e = node.Out("OUTPUT_E").Cast<E>();
  // 10/100/N lines of code.
  Stream<F> f = RunSomething(input, graph);
  // ...

  // Outputs.
  d.SetName("output_d").ConnectTo(graph.Out(0));
  e.SetName("output_e").ConnectTo(graph.Out(1));
  f.SetName("output_f").ConnectTo(graph.Out(2));

  return graph.GetConfig();
}

Utrzymuj odłączenie węzłów od siebie

W MediaPipe strumienie pakietów i pakiety boczne są równie istotne jak węzły przetwarzania. Wszystkie wymagania dotyczące danych wejściowych węzłów i produkty wyjściowe są wyrażone w sposób jednoznaczny i niezależny w zakresie przesyłanych i generowanych strumieni oraz pakietów dodatkowych.

NIE – przykład nieprawidłowego kodu.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));

  auto& node2 = graph.AddNode("Calculator2");
  node1.Out("OUTPUT").ConnectTo(node2.In("INPUT"));  // Bad.

  auto& node3 = graph.AddNode("Calculator3");
  node1.Out("OUTPUT").ConnectTo(node3.In("INPUT_B"));  // Bad.
  node2.Out("OUTPUT").ConnectTo(node3.In("INPUT_C"));  // Bad.

  auto& node4 = graph.AddNode("Calculator4");
  node1.Out("OUTPUT").ConnectTo(node4.In("INPUT_B"));  // Bad.
  node2.Out("OUTPUT").ConnectTo(node4.In("INPUT_C"));  // Bad.
  node3.Out("OUTPUT").ConnectTo(node4.In("INPUT_D"));  // Bad.

  // Outputs.
  node1.Out("OUTPUT").SetName("b").ConnectTo(graph.Out(0));  // Bad.
  node2.Out("OUTPUT").SetName("c").ConnectTo(graph.Out(1));  // Bad.
  node3.Out("OUTPUT").SetName("d").ConnectTo(graph.Out(2));  // Bad.
  node4.Out("OUTPUT").SetName("e").ConnectTo(graph.Out(3));  // Bad.

  return graph.GetConfig();
}

W tym kodzie:

  • Węzły są ze sobą sprzężone, na przykład node4 wie, skąd pochodzą dane wejściowe (node1, node2, node3), co komplikuje refaktoryzację, konserwację i ponowne użycie kodu.
    • Taki wzorzec użytkowania to przejście z reprezentacji protokołu proto na niższą wersję, w której węzły są domyślnie odłączone.
  • Wywołania node#.Out("OUTPUT") są duplikowane, co zmniejsza czytelność, ponieważ zamiast nich można użyć bardziej przejrzystych nazw i podać rzeczywisty typ.

Aby więc rozwiązać powyższe problemy, możesz napisać ten kod tworzenia wykresu:

TAK – przykład dobrego kodu.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  // `node1` usage is limited to 3 lines below.
  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();

  // `node2` usage is limited to 3 lines below.
  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();

  // `node3` usage is limited to 4 lines below.
  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();

  // `node4` usage is limited to 5 lines below.
  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Teraz w razie potrzeby możesz łatwo usunąć dyrektywę node1 i użyć danych b jako danych wejściowych wykresu. node2, node3, node4 (tak samo jak w przypadku reprezentacji proto) nie trzeba aktualizować, ponieważ są one od siebie odłączone.

Ogólnie powyższy kod lepiej replikuje wykres proto:

input_stream: "a"

node {
  calculator: "Calculator1"
  input_stream: "INPUT:a"
  output_stream: "OUTPUT:b"
}

node {
  calculator: "Calculator2"
  input_stream: "INPUT:b"
  output_stream: "OUTPUT:C"
}

node {
  calculator: "Calculator3"
  input_stream: "INPUT_B:b"
  input_stream: "INPUT_C:c"
  output_stream: "OUTPUT:d"
}

node {
  calculator: "Calculator4"
  input_stream: "INPUT_B:b"
  input_stream: "INPUT_C:c"
  input_stream: "INPUT_D:d"
  output_stream: "OUTPUT:e"
}

output_stream: "b"
output_stream: "c"
output_stream: "d"
output_stream: "e"

Ponadto można wyodrębnić funkcje użytkowe do dalszego wykorzystania na innych wykresach:

TAK – przykład dobrego kodu.

Stream<B> RunCalculator1(Stream<A> a, Graph& graph) {
  auto& node = graph.AddNode("Calculator1");
  a.ConnectTo(node.In("INPUT"));
  return node.Out("OUTPUT").Cast<B>();
}

Stream<C> RunCalculator2(Stream<B> b, Graph& graph) {
  auto& node = graph.AddNode("Calculator2");
  b.ConnectTo(node.In("INPUT"));
  return node.Out("OUTPUT").Cast<C>();
}

Stream<D> RunCalculator3(Stream<B> b, Stream<C> c, Graph& graph) {
  auto& node = graph.AddNode("Calculator3");
  b.ConnectTo(node.In("INPUT_B"));
  c.ConnectTo(node.In("INPUT_C"));
  return node.Out("OUTPUT").Cast<D>();
}

Stream<E> RunCalculator4(Stream<B> b, Stream<C> c, Stream<D> d, Graph& graph) {
  auto& node = graph.AddNode("Calculator4");
  b.ConnectTo(node.In("INPUT_B"));
  c.ConnectTo(node.In("INPUT_C"));
  d.ConnectTo(node.In("INPUT_D"));
  return node.Out("OUTPUT").Cast<E>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  Stream<B> b = RunCalculator1(a, graph);
  Stream<C> c = RunCalculator2(b, graph);
  Stream<D> d = RunCalculator3(b, c, graph);
  Stream<E> e = RunCalculator4(b, c, d, graph);

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Oddzielne węzły dla lepszej czytelności

NIE – przykład nieprawidłowego kodu.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();
  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();
  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();
  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();
  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();
  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

W powyższym kodzie może być trudno zrozumieć, gdzie zaczyna się i kończy każdy węzeł. Aby to poprawić i pomóc czytnikom kodu, możesz dodać puste wiersze przed każdym węzłem i po nim:

TAK – przykład dobrego kodu.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();

  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();

  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();

  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Powyższa reprezentacja lepiej pasuje do protokołu CalculatorGraphConfig.

Jeśli wyodrębniasz węzły do funkcji użytkowych, są one ograniczone do funkcji już dostępnych i nie wiadomo, gdzie się zaczynają i kończą, więc nie musisz nic robić:

TAK – przykład dobrego kodu.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  Stream<B> b = RunCalculator1(a, graph);
  Stream<C> c = RunCalculator2(b, graph);
  Stream<D> d = RunCalculator3(b, c, graph);
  Stream<E> e = RunCalculator4(b, c, d, graph);

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}