Gemini modellerine, OpenAI kitaplıkları (Python ve TypeScript/JavaScript) ile REST API kullanılarak erişilebilir. Bunun için üç satır kodu güncellemeniz ve Gemini API anahtarınızı kullanmanız gerekir. OpenAI kitaplıklarını kullanmıyorsanız Gemini API'yi doğrudan çağırmanızı öneririz.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
Neler değişti? Yalnızca üç satır!
api_key="GEMINI_API_KEY"
: "GEMINI_API_KEY
" yerine Google AI Studio'da alabileceğiniz gerçek Gemini API anahtarınızı girin.base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
: Bu, OpenAI kitaplığına istekleri varsayılan URL yerine Gemini API uç noktasına göndermesini söyler.model="gemini-2.0-flash"
: Uyumlu bir Gemini modeli seçin
Düşünüyorum
Gemini 2.5 modelleri, karmaşık sorunlar üzerinde düşünmek üzere eğitilmiştir. Bu sayede akıl yürütme becerisi önemli ölçüde gelişmiştir. Gemini API, modelin ne kadar düşüneceği üzerinde ayrıntılı kontrol sağlayan bir "düşünme bütçesi" parametresi içerir.
OpenAI API, Gemini API'den farklı olarak üç düşünme kontrolü düzeyi sunar: "low"
, "medium"
ve "high"
. Bu düzeyler sırasıyla 1.024, 8.192 ve 24.576 jetona karşılık gelir.
Düşünme özelliğini devre dışı bırakmak istiyorsanız reasoning_effort
değerini "none"
olarak ayarlayabilirsiniz
(2.5 Pro modellerinde akıl yürütme özelliğinin devre dışı bırakılamadığını unutmayın).
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
reasoning_effort="low",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.5-flash",
reasoning_effort: "low",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash",
"reasoning_effort": "low",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
Gemini düşünme modelleri düşünce özetleri de oluşturur ve tam düşünme bütçeleri kullanabilir.
Bu alanları isteğinize eklemek için extra_body
alanını kullanabilirsiniz.
reasoning_effort
ve thinking_budget
işlevlerinin çakıştığını, bu nedenle aynı anda kullanılamayacaklarını unutmayın.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=[{"role": "user", "content": "Explain to me how AI works"}],
extra_body={
'extra_body': {
"google": {
"thinking_config": {
"thinking_budget": 800,
"include_thoughts": True
}
}
}
}
)
print(response.choices[0].message)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.5-flash",
messages: [{role: "user", content: "Explain to me how AI works",}],
extra_body: {
"google": {
"thinking_config": {
"thinking_budget": 800,
"include_thoughts": true
}
}
}
});
console.log(response.choices[0].message);
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "Explain to me how AI works"}],
"extra_body": {
"google": {
"thinking_config": {
"include_thoughts": true
}
}
}
}'
Canlı Yayın
Gemini API, akış yanıtlarını destekler.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const completion = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
],
"stream": true
}'
İşlev çağırma
İşlev çağırma, üretken modellerden yapılandırılmış veri çıkışları almanızı kolaylaştırır ve Gemini API'de desteklenir.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Chicago today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
Görüntü anlama
Gemini modelleri yerel olarak çok formatlıdır ve birçok yaygın görüntü işleme görevinde sınıfının en iyisi performansı sunar.
Python
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
},
},
],
}
],
)
print(response.choices[0])
JavaScript
import OpenAI from "openai";
import fs from 'fs/promises';
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function encodeImage(imagePath) {
try {
const imageBuffer = await fs.readFile(imagePath);
return imageBuffer.toString('base64');
} catch (error) {
console.error("Error encoding image:", error);
return null;
}
}
async function main() {
const imagePath = "Path/to/agi/image.jpeg";
const base64Image = await encodeImage(imagePath);
const messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": `data:image/jpeg;base64,${base64Image}`
},
},
],
}
];
try {
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
});
console.log(response.choices[0]);
} catch (error) {
console.error("Error calling Gemini API:", error);
}
}
main();
REST
bash -c '
base64_image=$(base64 -i "Path/to/agi/image.jpeg");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"What is in this image?\" },
{
\"type\": \"image_url\",
\"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
}
]
}
]
}"
'
Resim üretin
Resim üretme:
Python
import base64
from openai import OpenAI
from PIL import Image
from io import BytesIO
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
)
response = client.images.generate(
model="imagen-3.0-generate-002",
prompt="a portrait of a sheepadoodle wearing a cape",
response_format='b64_json',
n=1,
)
for image_data in response.data:
image = Image.open(BytesIO(base64.b64decode(image_data.b64_json)))
image.show()
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const image = await openai.images.generate(
{
model: "imagen-3.0-generate-002",
prompt: "a portrait of a sheepadoodle wearing a cape",
response_format: "b64_json",
n: 1,
}
);
console.log(image.data);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/images/generations" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "imagen-3.0-generate-002",
"prompt": "a portrait of a sheepadoodle wearing a cape",
"response_format": "b64_json",
"n": 1,
}'
Ses yorumlama
Ses girişini analiz etme:
Python
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
with open("/path/to/your/audio/file.wav", "rb") as audio_file:
base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Transcribe this audio",
},
{
"type": "input_audio",
"input_audio": {
"data": base64_audio,
"format": "wav"
}
}
],
}
],
)
print(response.choices[0].message.content)
JavaScript
import fs from "fs";
import OpenAI from "openai";
const client = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
const audioFile = fs.readFileSync("/path/to/your/audio/file.wav");
const base64Audio = Buffer.from(audioFile).toString("base64");
async function main() {
const response = await client.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{
role: "user",
content: [
{
type: "text",
text: "Transcribe this audio",
},
{
type: "input_audio",
input_audio: {
data: base64Audio,
format: "wav",
},
},
],
},
],
});
console.log(response.choices[0].message.content);
}
main();
REST
bash -c '
base64_audio=$(base64 -i "/path/to/your/audio/file.wav");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"Transcribe this audio file.\" },
{
\"type\": \"input_audio\",
\"input_audio\": {
\"data\": \"${base64_audio}\",
\"format\": \"wav\"
}
}
]
}
]
}"
'
Yapılandırılmış çıkış
Gemini modelleri, JSON nesnelerini tanımladığınız herhangi bir yapıda çıkış olarak verebilir.
Python
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
JavaScript
import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});
const CalendarEvent = z.object({
name: z.string(),
date: z.string(),
participants: z.array(z.string()),
});
const completion = await openai.chat.completions.parse({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "Extract the event information." },
{ role: "user", content: "John and Susan are going to an AI conference on Friday" },
],
response_format: zodResponseFormat(CalendarEvent, "event"),
});
const event = completion.choices[0].message.parsed;
console.log(event);
Yerleştirmeler
Metin yerleştirmeleri, metin dizelerinin ilişkisini ölçer ve Gemini API kullanılarak oluşturulabilir.
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.embeddings.create(
input="Your text string goes here",
model="gemini-embedding-001"
)
print(response.data[0].embedding)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const embedding = await openai.embeddings.create({
model: "gemini-embedding-001",
input: "Your text string goes here",
});
console.log(embedding);
}
main();
REST
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"input": "Your text string goes here",
"model": "gemini-embedding-001"
}'
Batch API
OpenAI kitaplığını kullanarak toplu işler oluşturabilir, bunları gönderebilir ve durumlarını kontrol edebilirsiniz.
JSONL dosyasını OpenAI giriş biçiminde hazırlamanız gerekir. Örneğin:
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
Batch için OpenAI uyumluluğu, toplu iş oluşturmayı, iş durumunu izlemeyi ve toplu iş sonuçlarını görüntülemeyi destekler.
Yükleme ve indirme için uyumluluk şu anda desteklenmemektedir. Bunun yerine, aşağıdaki örnekte Batch API kullanılırken olduğu gibi dosya yükleme ve indirme için genai
istemcisi kullanılmaktadır.
Python
from openai import OpenAI
# Regular genai client for uploads & downloads
from google import genai
client = genai.Client()
openai_client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Upload the JSONL file in OpenAI input format, using regular genai SDK
uploaded_file = client.files.upload(
file='my-batch-requests.jsonl',
config=types.UploadFileConfig(display_name='my-batch-requests', mime_type='jsonl')
)
# Create batch
batch = openai_client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/chat/completions",
completion_window="24h"
)
# Wait for batch to finish (up to 24h)
while True:
batch = client.batches.retrieve(batch.id)
if batch.status in ('completed', 'failed', 'cancelled', 'expired'):
break
print(f"Batch not finished. Current state: {batch.status}. Waiting 30 seconds...")
time.sleep(30)
print(f"Batch finished: {batch}")
# Download results in OpenAI output format, using regular genai SDK
file_content = genai_client.files.download(file=batch.output_file_id).decode('utf-8')
# See batch_output JSONL in OpenAI output format
for line in file_content.splitlines():
print(line)
OpenAI SDK, Batch API ile yerleştirme oluşturmayı da destekler. Bunu yapmak için create
yönteminin endpoint
alanını bir yerleştirme uç noktasıyla, JSONL dosyasındaki url
ve model
anahtarlarını da değiştirin:
# JSONL file using embeddings model and endpoint
# {"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "ggemini-embedding-001", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
# {"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "gemini-embedding-001", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
# ...
# Create batch step with embeddings endpoint
batch = openai_client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/embeddings",
completion_window="24h"
)
Tam örnek için OpenAI uyumluluk yemek kitabının Toplu yerleştirme oluşturma bölümüne bakın.
extra_body
Gemini tarafından desteklenen ve OpenAI modellerinde bulunmayan ancak extra_body
alanı kullanılarak etkinleştirilebilen çeşitli özellikler vardır.
extra_body
özellikleri
cached_content |
Gemini'ın GenerateContentRequest.cached_content ile eşleşir. |
thinking_config |
Gemini'ın ThinkingConfig ile eşleşir. |
cached_content
extra_body
kullanarak cached_content
ayarlama örneğini aşağıda bulabilirsiniz:
Python
from openai import OpenAI
client = OpenAI(
api_key=MY_API_KEY,
base_url="https://generativelanguage.googleapis.com/v1beta/"
)
stream = client.chat.completions.create(
model="gemini-2.5-pro",
n=1,
messages=[
{
"role": "user",
"content": "Summarize the video"
}
],
stream=True,
stream_options={'include_usage': True},
extra_body={
'extra_body':
{
'google': {
'cached_content': "cachedContents/0000aaaa1111bbbb2222cccc3333dddd4444eeee"
}
}
}
)
for chunk in stream:
print(chunk)
print(chunk.usage.to_dict())
Modelleri listeleyin
Kullanılabilir Gemini modellerinin listesini alma:
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
models = client.models.list()
for model in models:
print(model.id)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const list = await openai.models.list();
for await (const model of list) {
console.log(model);
}
}
main();
REST
curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"
Model alma
Gemini modelini alma:
Python
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
model = client.models.retrieve("gemini-2.0-flash")
print(model.id)
JavaScript
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const model = await openai.models.retrieve("gemini-2.0-flash");
console.log(model.id);
}
main();
REST
curl https://generativelanguage.googleapis.com/v1beta/openai/models/gemini-2.0-flash \
-H "Authorization: Bearer GEMINI_API_KEY"
Mevcut sınırlamalar
Özellik desteğini genişletirken OpenAI kitaplıkları için destek hâlâ beta sürümündedir.
Desteklenen parametreler, yakında kullanıma sunulacak özellikler veya Gemini'ı kullanmaya başlarken karşılaştığınız sorunlar hakkında sorularınız varsa Geliştirici Forumumuza katılın.
Sırada ne var?
Daha ayrıntılı örnekler için OpenAI Uyumluluğu Colab'imizi deneyin.