العرض على ai.google.dev | التنفيذ في Google Colab | الفتح في Vertex AI | عرض المصدر على GitHub |
نظرة عامة
"جيما" هي عائلة تتألّف من نماذج لغوية كبيرة وحديثة وبسيطة ومفتوحة استنادًا إلى أبحاث وتقنيات Google DeepMind Gemini. يشرح هذا البرنامج التعليمي كيفية إجراء عملية أخذ العينات/الاستنتاج الأساسي باستخدام نموذج Gemma 2B Instruct (مكتبة Google DeepMind) في gemma
التي تمت كتابتها باستخدام SentencePiece على الرغم من عدم استخدام Flax مباشرةً في هذا الدفتر، فقد تم استخدامه لإنشاء Gemma.
يمكن تشغيل ورقة الملاحظات هذه على Google Colab باستخدام وحدة معالجة رسومات مجانية من T4 (انتقِل إلى تعديل > إعدادات ورقة الملاحظات > ضِمن مسرِّع الأجهزة، اختَر وحدة معالجة الرسومات T4).
ضبط إعدادات الجهاز
1. إعداد وصول Kaggle لـ Gemma
لإكمال هذا البرنامج التعليمي، عليك أولاً اتّباع تعليمات الإعداد في إعداد Gemma، والتي توضِّح لك كيفية إجراء ما يلي:
- يمكنك الوصول إلى Gemma على kaggle.com.
- اختَر بيئة تشغيل Colab بها موارد كافية لتشغيل نموذج Gemma.
- إنشاء وتكوين اسم مستخدم ومفتاح واجهة برمجة تطبيقات Kaggle.
بعد الانتهاء من إعداد Gemma، انتقِل إلى القسم التالي، حيث يمكنك ضبط متغيّرات البيئة لبيئة Colab.
2. ضبط متغيرات البيئة
ضبط متغيّرات البيئة لكل من KAGGLE_USERNAME
وKAGGLE_KEY
عندما يُطلب منك عرض رسالة "هل تريد منح إمكانية الوصول؟" أو الموافقة على توفير الوصول السري.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
3- تثبيت مكتبة gemma
تركّز ورقة الملاحظات هذه على استخدام وحدة معالجة رسومات مجانية في Colab. لتفعيل ميزة "تسريع الأجهزة"، انقر على تعديل >. إعدادات ورقة الملاحظات > اختَر وحدة معالجة الرسومات T4 > انقر على حفظ.
بعد ذلك، عليك تثبيت مكتبة Google DeepMind gemma
من github.com/google-deepmind/gemma
. إذا ظهرت لك رسالة خطأ بشأن "أداة حل التبعية في pip"، يمكنك عادةً تجاهلها.
pip install -q git+https://github.com/google-deepmind/gemma.git
تحميل نموذج Gemma وإعداده
- حمِّل نموذج Gemma باستخدام
kagglehub.model_download
الذي يأخذ ثلاث وسيطات:
handle
: مؤشر النموذج من Kagglepath
: (سلسلة اختيارية) المسار المحليforce_download
: (قيمة منطقية اختيارية) تفرض إعادة تنزيل النموذج
GEMMA_VARIANT = 'gemma2-2b-it' # @param ['gemma2-2b', 'gemma2-2b-it'] {type:"string"}
import kagglehub
GEMMA_PATH = kagglehub.model_download(f'google/gemma-2/flax/{GEMMA_VARIANT}')
Downloading 11 files: 0%| | 0/11 [00:00<?, ?it/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/manifest.ocdbt... 100%|██████████| 180/180 [00:00<00:00, 101kB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/d/b5a4695f4be0a2f41ec1e25616ebd7e7... 100%|██████████| 2.66k/2.66k [00:00<00:00, 5.36MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/descriptor/descriptor.pbtxt... 100%|██████████| 45.0/45.0 [00:00<00:00, 90.0kB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_METADATA... 100%|██████████| 55.3k/55.3k [00:00<00:00, 29.5MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_CHECKPOINT_METADATA... 100%|██████████| 92.0/92.0 [00:00<00:00, 234kB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/bf69258061ae5f35eb7a5669fe6877d4... 0%| | 0.00/2.12G [00:00<?, ?B/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/fc20151969d7ca91ea9d8275bda0e219... 100%|██████████| 2.64k/2.64k [00:00<00:00, 5.58MB/s] 0%| | 2.00M/2.12G [00:00<01:48, 20.8MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/834bb4bf1e3854eb09f6208c95c071b2... 0%| | 0.00/1.70G [00:00<?, ?B/s] 0%| | 9.00M/2.12G [00:00<00:46, 48.2MB/s] 0%| | 3.00M/1.70G [00:00<01:06, 27.6MB/s] 1%| | 14.0M/2.12G [00:00<00:46, 48.6MB/s] 1%| | 9.00M/1.70G [00:00<00:40, 44.5MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/manifest.ocdbt... 100%|██████████| 118/118 [00:00<00:00, 303kB/s] 1%| | 21.0M/2.12G [00:00<00:41, 53.7MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/checkpoint... 0%| | 0.00/22.5k [00:00<?, ?B/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/tokenizer.model... 100%|██████████| 22.5k/22.5k [00:00<00:00, 24.7MB/s] 1%| | 17.0M/1.70G [00:00<00:36, 49.5MB/s] 0%| | 0.00/4.04M [00:00<?, ?B/s] 100%|██████████| 4.04M/4.04M [00:00<00:00, 64.6MB/s] 1%|▏ | 24.0M/1.70G [00:00<00:34, 52.7MB/s] 2%|▏ | 40.0M/2.12G [00:00<00:34, 64.6MB/s] 2%|▏ | 33.0M/1.70G [00:00<00:27, 64.4MB/s] 2%|▏ | 49.0M/2.12G [00:00<00:34, 64.8MB/s] 3%|▎ | 47.0M/1.70G [00:00<00:20, 86.9MB/s] 3%|▎ | 59.0M/2.12G [00:00<00:29, 74.4MB/s] 3%|▎ | 56.0M/1.70G [00:00<00:24, 73.1MB/s] 3%|▎ | 67.0M/2.12G [00:01<00:31, 70.1MB/s] 4%|▎ | 64.0M/1.70G [00:01<00:25, 69.4MB/s] 3%|▎ | 74.0M/2.12G [00:01<00:32, 67.4MB/s] 4%|▍ | 73.0M/1.70G [00:01<00:23, 75.7MB/s] 4%|▍ | 84.0M/2.12G [00:01<00:28, 75.5MB/s] 5%|▍ | 81.0M/1.70G [00:01<00:22, 77.7MB/s] 5%|▌ | 95.0M/1.70G [00:01<00:17, 96.5MB/s] 4%|▍ | 92.0M/2.12G [00:01<00:38, 56.7MB/s] 6%|▌ | 106M/1.70G [00:01<00:17, 101MB/s] 5%|▍ | 102M/2.12G [00:01<00:32, 67.2MB/s] 7%|▋ | 117M/1.70G [00:01<00:16, 102MB/s] 5%|▌ | 110M/2.12G [00:01<00:30, 70.5MB/s] 7%|▋ | 128M/1.70G [00:01<00:16, 105MB/s] 5%|▌ | 119M/2.12G [00:01<00:28, 75.6MB/s] 8%|▊ | 142M/1.70G [00:01<00:14, 117MB/s] 6%|▌ | 129M/2.12G [00:02<00:30, 70.1MB/s] 9%|▉ | 154M/1.70G [00:01<00:17, 92.5MB/s] 6%|▋ | 138M/2.12G [00:02<00:28, 73.9MB/s] 9%|▉ | 164M/1.70G [00:02<00:18, 87.7MB/s] 7%|▋ | 146M/2.12G [00:02<00:30, 70.2MB/s] 10%|▉ | 173M/1.70G [00:02<00:20, 81.7MB/s] 7%|▋ | 153M/2.12G [00:02<00:33, 63.0MB/s] 10%|█ | 182M/1.70G [00:02<00:19, 82.8MB/s] 8%|▊ | 164M/2.12G [00:02<00:27, 75.3MB/s] 11%|█ | 195M/1.70G [00:02<00:17, 90.8MB/s] 8%|▊ | 174M/2.12G [00:02<00:25, 82.0MB/s] 12%|█▏ | 207M/1.70G [00:02<00:16, 99.0MB/s] 9%|▊ | 186M/2.12G [00:02<00:22, 92.9MB/s] 13%|█▎ | 218M/1.70G [00:02<00:16, 99.7MB/s] 9%|▉ | 196M/2.12G [00:02<00:22, 92.4MB/s] 13%|█▎ | 229M/1.70G [00:02<00:15, 103MB/s] 10%|▉ | 206M/2.12G [00:02<00:22, 92.1MB/s] 14%|█▎ | 239M/1.70G [00:02<00:15, 99.4MB/s] 10%|▉ | 215M/2.12G [00:03<00:22, 91.3MB/s] 14%|█▍ | 250M/1.70G [00:03<00:15, 101MB/s] 10%|█ | 226M/2.12G [00:03<00:21, 96.5MB/s] 15%|█▌ | 263M/1.70G [00:03<00:14, 108MB/s] 11%|█ | 238M/2.12G [00:03<00:19, 105MB/s] 11%|█▏ | 249M/2.12G [00:03<00:19, 103MB/s] 16%|█▌ | 274M/1.70G [00:03<00:16, 91.6MB/s] 12%|█▏ | 259M/2.12G [00:03<00:21, 93.3MB/s] 16%|█▋ | 284M/1.70G [00:03<00:20, 76.0MB/s] 12%|█▏ | 269M/2.12G [00:03<00:21, 94.3MB/s] 17%|█▋ | 295M/1.70G [00:03<00:18, 84.0MB/s] 13%|█▎ | 279M/2.12G [00:03<00:20, 94.2MB/s] 17%|█▋ | 304M/1.70G [00:03<00:17, 84.4MB/s] 13%|█▎ | 289M/2.12G [00:03<00:20, 94.9MB/s] 18%|█▊ | 313M/1.70G [00:03<00:18, 81.9MB/s] 14%|█▍ | 299M/2.12G [00:03<00:21, 91.4MB/s] 14%|█▍ | 308M/2.12G [00:04<00:21, 89.4MB/s] 18%|█▊ | 322M/1.70G [00:03<00:20, 73.5MB/s] 19%|█▉ | 330M/1.70G [00:04<00:19, 74.9MB/s] 15%|█▍ | 317M/2.12G [00:04<00:23, 81.1MB/s] 15%|█▌ | 326M/2.12G [00:04<00:23, 83.6MB/s] 19%|█▉ | 338M/1.70G [00:04<00:20, 72.0MB/s] 20%|█▉ | 346M/1.70G [00:04<00:19, 74.6MB/s] 15%|█▌ | 335M/2.12G [00:04<00:24, 79.2MB/s] 20%|██ | 354M/1.70G [00:04<00:19, 75.0MB/s] 16%|█▌ | 344M/2.12G [00:04<00:23, 81.4MB/s] 16%|█▋ | 352M/2.12G [00:04<00:28, 67.3MB/s] 21%|██ | 362M/1.70G [00:04<00:26, 54.3MB/s] 17%|█▋ | 359M/2.12G [00:04<00:31, 59.6MB/s] 21%|██ | 369M/1.70G [00:04<00:26, 53.4MB/s] 17%|█▋ | 366M/2.12G [00:05<00:31, 59.0MB/s] 22%|██▏ | 375M/1.70G [00:04<00:26, 54.9MB/s] 17%|█▋ | 372M/2.12G [00:05<00:31, 59.2MB/s] 22%|██▏ | 381M/1.70G [00:05<00:25, 56.2MB/s] 17%|█▋ | 379M/2.12G [00:05<00:30, 62.3MB/s] 22%|██▏ | 388M/1.70G [00:05<00:24, 56.8MB/s] 18%|█▊ | 386M/2.12G [00:05<00:29, 63.8MB/s] 23%|██▎ | 395M/1.70G [00:05<00:23, 60.2MB/s] 18%|█▊ | 394M/2.12G [00:05<00:27, 68.5MB/s] 23%|██▎ | 402M/1.70G [00:05<00:22, 62.7MB/s] 19%|█▊ | 401M/2.12G [00:05<00:27, 66.3MB/s] 23%|██▎ | 409M/1.70G [00:05<00:21, 64.4MB/s] 19%|█▉ | 408M/2.12G [00:05<00:28, 65.4MB/s] 24%|██▍ | 416M/1.70G [00:05<00:21, 65.4MB/s] 24%|██▍ | 423M/1.70G [00:05<00:26, 51.4MB/s] 19%|█▉ | 415M/2.12G [00:07<03:02, 10.1MB/s] 25%|██▍ | 429M/1.70G [00:08<02:56, 7.79MB/s] 19%|█▉ | 420M/2.12G [00:08<03:17, 9.28MB/s] 25%|██▌ | 439M/1.70G [00:08<01:52, 12.2MB/s] 20%|█▉ | 432M/2.12G [00:08<01:56, 15.7MB/s] 26%|██▌ | 447M/1.70G [00:08<01:22, 16.5MB/s] 20%|██ | 441M/2.12G [00:08<01:25, 21.1MB/s] 26%|██▌ | 454M/1.70G [00:08<01:05, 20.5MB/s] 21%|██ | 448M/2.12G [00:09<01:14, 24.0MB/s] 26%|██▋ | 460M/1.70G [00:08<00:54, 24.4MB/s] 27%|██▋ | 468M/1.70G [00:09<00:42, 31.6MB/s] 21%|██ | 454M/2.12G [00:09<01:07, 26.4MB/s] 21%|██▏ | 464M/2.12G [00:09<00:49, 36.4MB/s] 27%|██▋ | 476M/1.70G [00:09<00:38, 34.4MB/s] 28%|██▊ | 487M/1.70G [00:09<00:28, 47.0MB/s] 22%|██▏ | 471M/2.12G [00:09<00:53, 33.2MB/s] 28%|██▊ | 495M/1.70G [00:09<00:28, 46.0MB/s] 22%|██▏ | 477M/2.12G [00:09<00:49, 36.0MB/s] 29%|██▉ | 502M/1.70G [00:09<00:27, 47.6MB/s] 29%|██▉ | 510M/1.70G [00:09<00:23, 54.1MB/s] 22%|██▏ | 483M/2.12G [00:09<00:52, 33.9MB/s] 30%|██▉ | 519M/1.70G [00:09<00:20, 62.0MB/s] 23%|██▎ | 491M/2.12G [00:10<00:41, 41.9MB/s] 30%|███ | 527M/1.70G [00:09<00:19, 65.6MB/s] 23%|██▎ | 497M/2.12G [00:10<00:47, 37.1MB/s] 23%|██▎ | 506M/2.12G [00:10<00:36, 47.1MB/s] 31%|███ | 535M/1.70G [00:10<00:26, 47.1MB/s] 24%|██▎ | 513M/2.12G [00:10<00:35, 49.5MB/s] 31%|███ | 541M/1.70G [00:10<00:25, 49.2MB/s] 24%|██▍ | 523M/2.12G [00:10<00:28, 60.8MB/s] 32%|███▏ | 551M/1.70G [00:10<00:20, 60.3MB/s] 24%|██▍ | 530M/2.12G [00:10<00:30, 56.8MB/s] 32%|███▏ | 561M/1.70G [00:10<00:18, 65.7MB/s] 25%|██▍ | 537M/2.12G [00:10<00:29, 58.3MB/s] 33%|███▎ | 569M/1.70G [00:10<00:18, 67.2MB/s] 25%|██▌ | 547M/2.12G [00:10<00:24, 68.2MB/s] 33%|███▎ | 578M/1.70G [00:10<00:16, 73.2MB/s] 26%|██▌ | 557M/2.12G [00:11<00:21, 77.0MB/s] 34%|███▎ | 586M/1.70G [00:10<00:17, 71.0MB/s] 34%|███▍ | 595M/1.70G [00:11<00:15, 76.1MB/s] 26%|██▌ | 565M/2.12G [00:11<00:24, 69.2MB/s] 35%|███▍ | 609M/1.70G [00:11<00:13, 88.9MB/s] 26%|██▋ | 573M/2.12G [00:11<00:26, 63.3MB/s] 35%|███▌ | 618M/1.70G [00:11<00:13, 90.0MB/s] 27%|██▋ | 583M/2.12G [00:11<00:23, 71.8MB/s] 36%|███▌ | 630M/1.70G [00:11<00:11, 99.5MB/s] 37%|███▋ | 640M/1.70G [00:12<00:37, 31.0MB/s] 27%|██▋ | 591M/2.12G [00:12<01:09, 23.8MB/s] 37%|███▋ | 650M/1.70G [00:12<00:29, 38.7MB/s] 28%|██▊ | 602M/2.12G [00:12<00:49, 32.9MB/s] 28%|██▊ | 611M/2.12G [00:12<00:40, 40.3MB/s] 38%|███▊ | 660M/1.70G [00:12<00:24, 46.6MB/s] 39%|███▊ | 673M/1.70G [00:12<00:18, 60.3MB/s] 29%|██▊ | 619M/2.12G [00:12<00:37, 43.2MB/s] 39%|███▉ | 684M/1.70G [00:12<00:15, 69.5MB/s] 29%|██▉ | 626M/2.12G [00:12<00:35, 45.0MB/s] 40%|████ | 697M/1.70G [00:12<00:13, 79.8MB/s] 29%|██▉ | 638M/2.12G [00:13<00:27, 59.2MB/s] 41%|████ | 707M/1.70G [00:12<00:12, 83.7MB/s] 30%|██▉ | 646M/2.12G [00:13<00:25, 63.4MB/s] 41%|████ | 717M/1.70G [00:13<00:12, 88.5MB/s] 30%|███ | 654M/2.12G [00:13<00:23, 67.5MB/s] 31%|███ | 662M/2.12G [00:13<00:22, 70.8MB/s] 42%|████▏ | 727M/1.70G [00:13<00:15, 67.7MB/s] 42%|████▏ | 736M/1.70G [00:13<00:15, 68.8MB/s] 31%|███ | 670M/2.12G [00:13<00:26, 58.5MB/s] 43%|████▎ | 744M/1.70G [00:13<00:15, 67.3MB/s] 31%|███▏ | 677M/2.12G [00:13<00:29, 53.2MB/s] 43%|████▎ | 755M/1.70G [00:13<00:13, 77.3MB/s] 32%|███▏ | 683M/2.12G [00:13<00:28, 54.4MB/s] 44%|████▍ | 765M/1.70G [00:13<00:12, 83.9MB/s] 32%|███▏ | 690M/2.12G [00:13<00:26, 58.6MB/s] 44%|████▍ | 774M/1.70G [00:13<00:13, 77.1MB/s] 32%|███▏ | 703M/2.12G [00:14<00:19, 77.2MB/s] 45%|████▌ | 786M/1.70G [00:14<00:11, 88.4MB/s] 33%|███▎ | 712M/2.12G [00:14<00:20, 73.5MB/s] 46%|████▌ | 797M/1.70G [00:14<00:10, 94.8MB/s] 33%|███▎ | 722M/2.12G [00:14<00:19, 79.4MB/s] 46%|████▋ | 807M/1.70G [00:14<00:10, 93.8MB/s] 34%|███▍ | 731M/2.12G [00:14<00:18, 81.6MB/s] 47%|████▋ | 817M/1.70G [00:14<00:10, 90.0MB/s] 34%|███▍ | 740M/2.12G [00:14<00:17, 83.8MB/s] 48%|████▊ | 829M/1.70G [00:14<00:09, 98.2MB/s] 35%|███▍ | 749M/2.12G [00:14<00:17, 84.2MB/s] 48%|████▊ | 839M/1.70G [00:14<00:09, 95.3MB/s] 35%|███▌ | 759M/2.12G [00:14<00:16, 89.8MB/s] 36%|███▌ | 769M/2.12G [00:14<00:15, 93.3MB/s] 49%|████▉ | 849M/1.70G [00:14<00:09, 93.8MB/s] 36%|███▌ | 780M/2.12G [00:14<00:14, 97.7MB/s] 49%|████▉ | 859M/1.70G [00:14<00:10, 91.0MB/s] 37%|███▋ | 793M/2.12G [00:15<00:13, 106MB/s] 50%|████▉ | 868M/1.70G [00:14<00:10, 89.9MB/s] 37%|███▋ | 804M/2.12G [00:15<00:13, 107MB/s] 50%|█████ | 877M/1.70G [00:15<00:10, 87.0MB/s] 51%|█████ | 886M/1.70G [00:15<00:10, 85.0MB/s] 38%|███▊ | 815M/2.12G [00:15<00:16, 84.8MB/s] 51%|█████▏ | 895M/1.70G [00:15<00:12, 69.5MB/s] 38%|███▊ | 824M/2.12G [00:15<00:18, 74.1MB/s] 52%|█████▏ | 904M/1.70G [00:15<00:11, 73.7MB/s] 38%|███▊ | 832M/2.12G [00:15<00:18, 75.1MB/s] 52%|█████▏ | 912M/1.70G [00:15<00:11, 75.6MB/s] 39%|███▉ | 843M/2.12G [00:15<00:16, 83.7MB/s] 40%|███▉ | 856M/2.12G [00:15<00:14, 95.7MB/s] 53%|█████▎ | 921M/1.70G [00:15<00:12, 71.1MB/s] 40%|███▉ | 866M/2.12G [00:15<00:13, 97.5MB/s] 53%|█████▎ | 931M/1.70G [00:15<00:10, 77.9MB/s] 41%|████ | 878M/2.12G [00:16<00:12, 104MB/s] 54%|█████▍ | 939M/1.70G [00:16<00:11, 70.3MB/s] 41%|████ | 889M/2.12G [00:16<00:12, 104MB/s] 55%|█████▍ | 950M/1.70G [00:16<00:10, 80.9MB/s] 56%|█████▌ | 967M/1.70G [00:16<00:07, 105MB/s] 42%|████▏ | 900M/2.12G [00:16<00:17, 73.9MB/s] 56%|█████▌ | 978M/1.70G [00:16<00:07, 105MB/s] 42%|████▏ | 909M/2.12G [00:16<00:17, 76.9MB/s] 57%|█████▋ | 989M/1.70G [00:16<00:07, 103MB/s] 43%|████▎ | 921M/2.12G [00:16<00:14, 87.9MB/s] 57%|█████▋ | 0.98G/1.70G [00:16<00:07, 105MB/s] 58%|█████▊ | 0.99G/1.70G [00:16<00:06, 110MB/s] 43%|████▎ | 931M/2.12G [00:16<00:15, 81.4MB/s] 43%|████▎ | 940M/2.12G [00:16<00:15, 82.6MB/s] 59%|█████▊ | 1.00G/1.70G [00:16<00:09, 76.3MB/s] 44%|████▍ | 949M/2.12G [00:17<00:18, 70.7MB/s] 44%|████▍ | 957M/2.12G [00:17<00:18, 67.3MB/s] 59%|█████▉ | 1.01G/1.70G [00:17<00:11, 64.5MB/s] 45%|████▍ | 964M/2.12G [00:17<00:19, 65.9MB/s] 60%|█████▉ | 1.02G/1.70G [00:17<00:11, 64.5MB/s] 45%|████▍ | 971M/2.12G [00:17<00:19, 65.2MB/s] 60%|██████ | 1.02G/1.70G [00:17<00:11, 63.6MB/s] 45%|████▌ | 978M/2.12G [00:17<00:19, 63.6MB/s] 61%|██████ | 1.03G/1.70G [00:17<00:11, 62.9MB/s] 45%|████▌ | 985M/2.12G [00:17<00:19, 64.7MB/s] 61%|██████ | 1.04G/1.70G [00:17<00:11, 62.8MB/s] 46%|████▌ | 992M/2.12G [00:17<00:18, 65.3MB/s] 61%|██████▏ | 1.04G/1.70G [00:17<00:10, 64.5MB/s] 46%|████▌ | 0.98G/2.12G [00:17<00:17, 68.9MB/s] 62%|██████▏ | 1.05G/1.70G [00:17<00:10, 66.5MB/s] 46%|████▋ | 0.98G/2.12G [00:18<00:17, 69.8MB/s] 62%|██████▏ | 1.06G/1.70G [00:17<00:10, 67.7MB/s] 47%|████▋ | 0.99G/2.12G [00:18<00:16, 73.2MB/s] 63%|██████▎ | 1.07G/1.70G [00:18<00:09, 69.0MB/s] 47%|████▋ | 1.00G/2.12G [00:18<00:16, 72.2MB/s] 63%|██████▎ | 1.07G/1.70G [00:18<00:09, 68.5MB/s] 48%|████▊ | 1.01G/2.12G [00:18<00:16, 73.8MB/s] 63%|██████▎ | 1.08G/1.70G [00:18<00:09, 69.1MB/s] 48%|████▊ | 1.01G/2.12G [00:18<00:18, 63.5MB/s] 64%|██████▍ | 1.09G/1.70G [00:18<00:10, 61.4MB/s] 48%|████▊ | 1.02G/2.12G [00:18<00:20, 57.1MB/s] 64%|██████▍ | 1.09G/1.70G [00:18<00:11, 55.9MB/s] 49%|████▊ | 1.03G/2.12G [00:18<00:20, 57.9MB/s] 65%|██████▍ | 1.10G/1.70G [00:18<00:11, 56.5MB/s] 49%|████▉ | 1.04G/2.12G [00:18<00:18, 63.5MB/s] 65%|██████▍ | 1.10G/1.70G [00:18<00:11, 57.4MB/s] 49%|████▉ | 1.04G/2.12G [00:19<00:18, 63.4MB/s] 65%|██████▌ | 1.11G/1.70G [00:18<00:10, 58.5MB/s] 50%|████▉ | 1.05G/2.12G [00:19<00:17, 64.7MB/s] 66%|██████▌ | 1.12G/1.70G [00:19<00:10, 61.8MB/s] 50%|████▉ | 1.06G/2.12G [00:19<00:16, 67.6MB/s] 66%|██████▌ | 1.12G/1.70G [00:19<00:09, 63.1MB/s] 50%|█████ | 1.06G/2.12G [00:19<00:15, 70.6MB/s] 67%|██████▋ | 1.13G/1.70G [00:19<00:08, 69.1MB/s] 51%|█████ | 1.07G/2.12G [00:19<00:15, 72.6MB/s] 67%|██████▋ | 1.14G/1.70G [00:19<00:08, 71.4MB/s] 51%|█████ | 1.08G/2.12G [00:19<00:15, 73.6MB/s] 68%|██████▊ | 1.15G/1.70G [00:19<00:07, 74.3MB/s] 51%|█████▏ | 1.09G/2.12G [00:19<00:14, 76.0MB/s] 68%|██████▊ | 1.16G/1.70G [00:19<00:07, 74.0MB/s] 52%|█████▏ | 1.10G/2.12G [00:19<00:15, 69.1MB/s] 69%|██████▊ | 1.17G/1.70G [00:19<00:08, 69.9MB/s] 52%|█████▏ | 1.10G/2.12G [00:19<00:15, 70.8MB/s] 69%|██████▉ | 1.17G/1.70G [00:19<00:08, 70.0MB/s] 52%|█████▏ | 1.11G/2.12G [00:20<00:16, 66.4MB/s] 69%|██████▉ | 1.18G/1.70G [00:19<00:09, 60.2MB/s] 70%|██████▉ | 1.19G/1.70G [00:20<00:08, 62.5MB/s] 53%|█████▎ | 1.12G/2.12G [00:20<00:19, 54.8MB/s] 70%|███████ | 1.19G/1.70G [00:20<00:08, 63.8MB/s] 53%|█████▎ | 1.12G/2.12G [00:20<00:18, 57.7MB/s] 71%|███████ | 1.20G/1.70G [00:20<00:08, 64.8MB/s] 53%|█████▎ | 1.13G/2.12G [00:20<00:17, 61.3MB/s] 71%|███████ | 1.21G/1.70G [00:20<00:07, 68.3MB/s] 54%|█████▍ | 1.14G/2.12G [00:20<00:16, 65.0MB/s] 71%|███████▏ | 1.21G/1.70G [00:20<00:07, 66.1MB/s] 54%|█████▍ | 1.15G/2.12G [00:20<00:16, 64.4MB/s] 72%|███████▏ | 1.22G/1.70G [00:20<00:07, 66.4MB/s] 54%|█████▍ | 1.15G/2.12G [00:20<00:16, 63.0MB/s] 72%|███████▏ | 1.23G/1.70G [00:20<00:08, 61.2MB/s] 55%|█████▍ | 1.16G/2.12G [00:20<00:16, 61.6MB/s] 73%|███████▎ | 1.23G/1.70G [00:20<00:08, 58.0MB/s] 55%|█████▌ | 1.17G/2.12G [00:21<00:16, 61.0MB/s] 55%|█████▌ | 1.17G/2.12G [00:22<01:11, 14.1MB/s] 73%|███████▎ | 1.24G/1.70G [00:22<00:37, 13.4MB/s] 56%|█████▌ | 1.18G/2.12G [00:22<00:51, 19.6MB/s] 73%|███████▎ | 1.25G/1.70G [00:22<00:23, 20.3MB/s] 56%|█████▌ | 1.19G/2.12G [00:22<00:42, 23.4MB/s] 74%|███████▍ | 1.25G/1.70G [00:22<00:19, 24.2MB/s] 74%|███████▍ | 1.26G/1.70G [00:22<00:13, 34.0MB/s] 75%|███████▌ | 1.28G/1.70G [00:22<00:08, 50.6MB/s] 76%|███████▌ | 1.29G/1.70G [00:22<00:07, 59.8MB/s] 57%|█████▋ | 1.20G/2.12G [00:23<00:35, 27.6MB/s] 57%|█████▋ | 1.21G/2.12G [00:23<00:26, 36.3MB/s] 76%|███████▋ | 1.30G/1.70G [00:23<00:07, 57.6MB/s] 77%|███████▋ | 1.31G/1.70G [00:23<00:06, 62.4MB/s] 57%|█████▋ | 1.21G/2.12G [00:23<00:27, 35.1MB/s] 58%|█████▊ | 1.22G/2.12G [00:23<00:24, 38.9MB/s] 77%|███████▋ | 1.31G/1.70G [00:23<00:07, 53.2MB/s] 58%|█████▊ | 1.23G/2.12G [00:23<00:22, 43.0MB/s] 78%|███████▊ | 1.32G/1.70G [00:23<00:06, 61.9MB/s] 78%|███████▊ | 1.33G/1.70G [00:23<00:05, 68.7MB/s] 58%|█████▊ | 1.24G/2.12G [00:23<00:20, 46.8MB/s] 79%|███████▉ | 1.34G/1.70G [00:23<00:05, 72.2MB/s] 59%|█████▉ | 1.24G/2.12G [00:23<00:20, 46.0MB/s] 80%|███████▉ | 1.35G/1.70G [00:23<00:04, 77.2MB/s] 80%|███████▉ | 1.36G/1.70G [00:23<00:04, 74.6MB/s] 59%|█████▉ | 1.25G/2.12G [00:24<00:19, 47.6MB/s] 81%|████████ | 1.37G/1.70G [00:24<00:04, 79.9MB/s] 60%|█████▉ | 1.26G/2.12G [00:24<00:16, 56.2MB/s] 81%|████████ | 1.38G/1.70G [00:24<00:03, 88.6MB/s] 60%|█████▉ | 1.27G/2.12G [00:24<00:18, 48.6MB/s] 82%|████████▏ | 1.39G/1.70G [00:24<00:03, 87.9MB/s] 60%|██████ | 1.27G/2.12G [00:24<00:16, 55.1MB/s] 82%|████████▏ | 1.40G/1.70G [00:24<00:03, 81.4MB/s] 61%|██████ | 1.28G/2.12G [00:24<00:14, 62.4MB/s] 83%|████████▎ | 1.41G/1.70G [00:24<00:03, 82.2MB/s] 61%|██████ | 1.29G/2.12G [00:24<00:14, 62.8MB/s] 83%|████████▎ | 1.42G/1.70G [00:24<00:03, 85.9MB/s] 61%|██████▏ | 1.30G/2.12G [00:24<00:13, 64.0MB/s] 84%|████████▍ | 1.43G/1.70G [00:24<00:02, 99.6MB/s] 85%|████████▍ | 1.45G/1.70G [00:24<00:02, 109MB/s] 62%|██████▏ | 1.31G/2.12G [00:25<00:15, 57.2MB/s] 86%|████████▌ | 1.46G/1.70G [00:25<00:02, 110MB/s] 62%|██████▏ | 1.32G/2.12G [00:25<00:12, 69.9MB/s] 86%|████████▌ | 1.47G/1.70G [00:25<00:02, 110MB/s] 63%|██████▎ | 1.33G/2.12G [00:25<00:11, 74.1MB/s] 87%|████████▋ | 1.48G/1.70G [00:25<00:02, 102MB/s] 63%|██████▎ | 1.34G/2.12G [00:25<00:10, 82.6MB/s] 87%|████████▋ | 1.49G/1.70G [00:25<00:02, 96.1MB/s] 64%|██████▎ | 1.34G/2.12G [00:25<00:09, 85.4MB/s] 88%|████████▊ | 1.50G/1.70G [00:25<00:02, 106MB/s] 64%|██████▍ | 1.35G/2.12G [00:25<00:11, 71.7MB/s] 89%|████████▉ | 1.52G/1.70G [00:25<00:01, 119MB/s] 65%|██████▍ | 1.37G/2.12G [00:25<00:09, 84.5MB/s] 90%|████████▉ | 1.53G/1.70G [00:25<00:01, 117MB/s] 65%|██████▍ | 1.37G/2.12G [00:25<00:11, 69.7MB/s] 91%|█████████ | 1.54G/1.70G [00:25<00:01, 99.4MB/s] 65%|██████▌ | 1.38G/2.12G [00:26<00:10, 74.7MB/s] 91%|█████████ | 1.55G/1.70G [00:25<00:01, 99.8MB/s] 66%|██████▌ | 1.39G/2.12G [00:26<00:10, 74.7MB/s] 92%|█████████▏| 1.56G/1.70G [00:26<00:01, 102MB/s] 66%|██████▋ | 1.40G/2.12G [00:26<00:09, 83.9MB/s] 93%|█████████▎| 1.57G/1.70G [00:26<00:01, 108MB/s] 67%|██████▋ | 1.41G/2.12G [00:26<00:08, 91.4MB/s] 93%|█████████▎| 1.58G/1.70G [00:26<00:01, 100MB/s] 67%|██████▋ | 1.42G/2.12G [00:26<00:08, 90.9MB/s] 94%|█████████▎| 1.59G/1.70G [00:26<00:01, 87.1MB/s] 68%|██████▊ | 1.43G/2.12G [00:26<00:08, 86.6MB/s] 94%|█████████▍| 1.60G/1.70G [00:26<00:01, 82.8MB/s] 68%|██████▊ | 1.44G/2.12G [00:26<00:10, 70.8MB/s] 95%|█████████▍| 1.61G/1.70G [00:26<00:01, 78.2MB/s] 68%|██████▊ | 1.45G/2.12G [00:26<00:09, 73.6MB/s] 95%|█████████▌| 1.62G/1.70G [00:26<00:01, 83.3MB/s] 69%|██████▉ | 1.46G/2.12G [00:27<00:08, 80.8MB/s] 96%|█████████▌| 1.63G/1.70G [00:26<00:00, 85.3MB/s] 69%|██████▉ | 1.47G/2.12G [00:27<00:08, 81.4MB/s] 96%|█████████▋| 1.64G/1.70G [00:27<00:00, 87.5MB/s] 70%|██████▉ | 1.48G/2.12G [00:27<00:07, 86.9MB/s] 97%|█████████▋| 1.65G/1.70G [00:27<00:00, 70.2MB/s] 70%|███████ | 1.48G/2.12G [00:27<00:10, 67.4MB/s] 97%|█████████▋| 1.66G/1.70G [00:27<00:00, 75.5MB/s] 71%|███████ | 1.49G/2.12G [00:27<00:09, 71.1MB/s] 98%|█████████▊| 1.67G/1.70G [00:27<00:00, 82.3MB/s] 71%|███████ | 1.50G/2.12G [00:27<00:08, 74.9MB/s] 99%|█████████▊| 1.68G/1.70G [00:27<00:00, 90.1MB/s] 71%|███████▏ | 1.51G/2.12G [00:27<00:08, 75.7MB/s] 99%|█████████▉| 1.69G/1.70G [00:27<00:00, 89.7MB/s] 72%|███████▏ | 1.52G/2.12G [00:27<00:08, 79.7MB/s] 100%|██████████| 1.70G/1.70G [00:27<00:00, 65.5MB/s] 72%|███████▏ | 1.53G/2.12G [00:28<00:08, 76.6MB/s] 73%|███████▎ | 1.54G/2.12G [00:28<00:06, 98.0MB/s] 74%|███████▎ | 1.56G/2.12G [00:28<00:05, 112MB/s] 74%|███████▍ | 1.57G/2.12G [00:28<00:05, 105MB/s] 75%|███████▍ | 1.58G/2.12G [00:28<00:05, 107MB/s] 75%|███████▌ | 1.59G/2.12G [00:28<00:06, 89.3MB/s] 76%|███████▌ | 1.61G/2.12G [00:28<00:05, 101MB/s] 77%|███████▋ | 1.62G/2.12G [00:28<00:04, 112MB/s] 77%|███████▋ | 1.63G/2.12G [00:29<00:05, 92.3MB/s] 78%|███████▊ | 1.64G/2.12G [00:29<00:06, 78.4MB/s] 78%|███████▊ | 1.66G/2.12G [00:29<00:05, 95.5MB/s] 79%|███████▉ | 1.67G/2.12G [00:29<00:04, 101MB/s] 80%|███████▉ | 1.69G/2.12G [00:29<00:04, 114MB/s] 80%|████████ | 1.70G/2.12G [00:29<00:03, 124MB/s] 81%|████████ | 1.71G/2.12G [00:29<00:03, 122MB/s] 82%|████████▏ | 1.73G/2.12G [00:30<00:04, 95.5MB/s] 82%|████████▏ | 1.74G/2.12G [00:30<00:03, 104MB/s] 83%|████████▎ | 1.75G/2.12G [00:30<00:03, 103MB/s] 83%|████████▎ | 1.76G/2.12G [00:30<00:04, 76.8MB/s] 84%|████████▍ | 1.78G/2.12G [00:30<00:03, 96.8MB/s] 85%|████████▍ | 1.79G/2.12G [00:30<00:03, 102MB/s] 85%|████████▌ | 1.80G/2.12G [00:31<00:04, 69.5MB/s] 86%|████████▌ | 1.82G/2.12G [00:31<00:03, 92.2MB/s] 87%|████████▋ | 1.83G/2.12G [00:31<00:03, 91.5MB/s] 87%|████████▋ | 1.84G/2.12G [00:31<00:02, 98.1MB/s] 88%|████████▊ | 1.85G/2.12G [00:31<00:03, 85.1MB/s] 88%|████████▊ | 1.86G/2.12G [00:31<00:03, 88.0MB/s] 89%|████████▊ | 1.87G/2.12G [00:31<00:02, 88.9MB/s] 89%|████████▉ | 1.88G/2.12G [00:32<00:02, 93.5MB/s] 90%|████████▉ | 1.90G/2.12G [00:32<00:02, 106MB/s] 90%|█████████ | 1.91G/2.12G [00:32<00:01, 111MB/s] 91%|█████████ | 1.92G/2.12G [00:32<00:02, 98.7MB/s] 91%|█████████▏| 1.93G/2.12G [00:32<00:01, 107MB/s] 92%|█████████▏| 1.95G/2.12G [00:32<00:01, 104MB/s] 93%|█████████▎| 1.96G/2.12G [00:32<00:01, 117MB/s] 93%|█████████▎| 1.97G/2.12G [00:32<00:01, 106MB/s] 94%|█████████▍| 1.98G/2.12G [00:33<00:01, 92.6MB/s] 94%|█████████▍| 1.99G/2.12G [00:33<00:01, 86.4MB/s] 95%|█████████▍| 2.00G/2.12G [00:33<00:01, 68.3MB/s] 95%|█████████▌| 2.02G/2.12G [00:33<00:01, 84.0MB/s] 96%|█████████▌| 2.03G/2.12G [00:33<00:01, 91.6MB/s] 96%|█████████▋| 2.04G/2.12G [00:33<00:00, 96.2MB/s] 97%|█████████▋| 2.05G/2.12G [00:33<00:00, 108MB/s] 98%|█████████▊| 2.06G/2.12G [00:33<00:00, 89.9MB/s] 98%|█████████▊| 2.08G/2.12G [00:34<00:00, 103MB/s] 99%|█████████▉| 2.09G/2.12G [00:34<00:00, 115MB/s] 100%|██████████| 2.12G/2.12G [00:34<00:00, 66.0MB/s]
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1
- تحقَّق من الموقع الجغرافي لقيم ترجيح النموذج وأداة إنشاء الرموز المميّزة، ثم اضبط متغيّرات المسار. سيكون دليل أداة إنشاء الرموز المميّزة في الدليل الرئيسي الذي نزّلت فيه النموذج، بينما ستكون القيم التقديرية للنموذج في دليل فرعي. على سبيل المثال:
- سيكون الملف
tokenizer.model
باللغة/LOCAL/PATH/TO/gemma/flax/2b-it/2
). - ستكون النقطة المرجعية للنموذج في
/LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it
).
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/gemma2-2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/tokenizer.model
إجراء أخذ العينات/الاستنتاج
- تحميل نقطة مراجعة نموذج Gemma وتنسيقها باستخدام الطريقة
gemma.params.load_and_format_params
:
from gemma import params as params_lib
params = params_lib.load_and_format_params(CKPT_PATH)
- تحميل برنامج ترميز Gemma المميز الذي تم إنشاؤه باستخدام
sentencepiece.SentencePieceProcessor
:
import sentencepiece as spm
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
- لتحميل الإعدادات الصحيحة تلقائيًا من نقطة مراجعة نموذج Gemma، استخدِم
gemma.transformer.TransformerConfig
. الوسيطةcache_size
هي عدد الخطوات الزمنية في ذاكرة التخزين المؤقت لـ GemmaTransformer
. بعد ذلك، يمكنك إنشاء مثيل لنموذج Gemma كـtransformer
باستخدامgemma.transformer.Transformer
(التي تكتسب منflax.linen.Module
).
from gemma import transformer as transformer_lib
transformer_config = transformer_lib.TransformerConfig.from_params(
params=params,
cache_size=1024
)
transformer = transformer_lib.Transformer(transformer_config)
- أنشئ
sampler
باستخدامgemma.sampler.Sampler
أعلى نقطة فحص أو معاملات نموذج Gemma وأداة إنشاء الرموز المميّزة:
from gemma import sampler as sampler_lib
sampler = sampler_lib.Sampler(
transformer=transformer,
vocab=vocab,
params=params['transformer'],
)
- اكتب طلبًا باللغة
input_batch
ونفِّذ الاستنتاج. يمكنك تعديلtotal_generation_steps
(عدد الخطوات التي يتم تنفيذها عند إنشاء ردّ، إذ يستخدم هذا المثال100
للاحتفاظ بذاكرة المضيف).
prompt = [
"what is JAX in 3 bullet points?",
]
reply = sampler(input_strings=prompt,
total_generation_steps=128,
)
for input_string, out_string in zip(prompt, reply.text):
print(f"Prompt:\n{input_string}\nOutput:\n{out_string}")
Prompt: what is JAX in 3 bullet points? Output: * **High-performance numerical computation:** JAX leverages the power of GPUs and TPUs to accelerate complex mathematical operations, making it ideal for scientific computing, machine learning, and data analysis. * **Automatic differentiation:** JAX provides automatic differentiation capabilities, allowing you to compute gradients and optimize models efficiently. This simplifies the process of training deep learning models. * **Functional programming:** JAX embraces functional programming principles, promoting code readability and maintainability. It offers a flexible and expressive syntax for defining and manipulating data. <end_of_turn>
- (اختياري) قم بتشغيل هذه الخلية لتحرير الذاكرة إذا كنت قد أكملت دفتر الملاحظات وتريد تجربة مطالبة أخرى. بعد ذلك، يمكنك إنشاء مثيل من
sampler
مرة أخرى في الخطوة 3 وتخصيص الطلب في الخطوة 4 وتنفيذه.
del sampler
مزيد من المعلومات
- يمكنك معرفة المزيد عن مكتبة
gemma
في Google DeepMind على GitHub، والتي تحتوي على سلاسل توثيق للوحدات التي استخدمتها في هذا البرنامج التعليمي، مثلgemma.params
،gemma.transformer
،gemma.sampler
. - تحتوي المكتبات التالية على مواقع إلكترونية خاصة بها للمستندات: الأساسية JAX وFlax وOrbax.
- للحصول على مستندات حول أداة إنشاء الرموز المميّزة أو أداة إزالة الترميز من
sentencepiece
، يُرجى الاطّلاع على مستودع GitHub منsentencepiece
التابع لشركة Google. - للاطّلاع على مستندات
kagglehub
، يُرجى الاطّلاع علىREADME.md
على مستودع GitHub الخاص بـkagglehub
من Kaggle. - تعرَّف على كيفية استخدام نماذج Gemma مع Google Cloud Vertex AI.