Wnioskowanie z Gemma przy użyciu JAX i Flax

Wyświetl na ai.google.dev Uruchom w Google Colab Otwórz w Vertex AI Wyświetl źródło w GitHubie

Omówienie

Gemma to rodzina lekkich, nowoczesnych, otwartych modeli językowych (LLM) opracowanych na podstawie badań i technologii Google DeepMind Gemini. Ten samouczek pokazuje, jak wykonać podstawowe próbkowanie/wnioskowanie za pomocą modelu Gemma 2B Instruct przy użyciu biblioteki Google DeepMind gemma, która została napisana przy użyciu JAX (zaawansowanej biblioteki liczbowej do obliczeń), Flax (biblioteki sieci neuronowej opartej na JAX), Orbax (biblioteki tokenów do trenowania JAX (biblioteki narzędzi do trenowania{/0) SentencePiece Choć w notatniku nie jest używany bezpośrednio w tym notatniku, do utworzenia Gemmy użyto flaxa.

Ten notatnik może działać w Google Colab z bezpłatnym GPU T4 (kliknij Edytuj > Ustawienia notatnika > w sekcji Akcelerator sprzętowy wybierz GPU T4).

Konfiguracja

1. Konfigurowanie dostępu do Kaggle dla Gemma

Aby ukończyć ten samouczek, musisz najpierw wykonać instrukcje konfiguracji opisane w artykule Konfiguracja Gemma, z którego dowiesz się, jak:

  • Uzyskaj dostęp do Gemmy na kaggle.com.
  • Wybierz środowisko wykonawcze Colab z wystarczającą ilością zasobów do uruchomienia modelu Gemma.
  • Wygeneruj i skonfiguruj nazwę użytkownika i klucz interfejsu API Kaggle.

Po zakończeniu konfiguracji Gemma przejdź do następnej sekcji, w której możesz ustawić zmienne środowiskowe dla środowiska Colab.

2. Ustawianie zmiennych środowiskowych

Ustaw zmienne środowiskowe dla interfejsów KAGGLE_USERNAME i KAGGLE_KEY. Kiedy pojawi się komunikat „Przyznać dostęp?”, Użytkownik wyraża zgodę na przyznanie tajnego dostępu.

import os
from google.colab import userdata # `userdata` is a Colab API.

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

3. Zainstaluj bibliotekę gemma

Ten notatnik dotyczy bezpłatnego GPU w Colab. Aby włączyć akcelerację sprzętową, kliknij Edytuj. Ustawienia notatnika > Wybierz T4 GPU > Zapisz.

Następnie musisz zainstalować bibliotekę Google DeepMind gemma ze strony github.com/google-deepmind/gemma. Jeśli pojawi się błąd dotyczący resolvera zależności pip, zwykle możesz go zignorować.

pip install -q git+https://github.com/google-deepmind/gemma.git

Wczytaj i przygotuj model Gemma

  1. Wczytaj model Gemma za pomocą parametru kagglehub.model_download, który przyjmuje 3 argumenty:
  • handle: uchwyt modelu z Kaggle
  • path: (opcjonalny ciąg znaków) ścieżka lokalna
  • force_download: (opcjonalna wartość logiczna) wymusza ponowne pobranie modelu.
GEMMA_VARIANT = 'gemma2-2b-it' # @param ['gemma2-2b', 'gemma2-2b-it'] {type:"string"}
import kagglehub

GEMMA_PATH = kagglehub.model_download(f'google/gemma-2/flax/{GEMMA_VARIANT}')
Downloading 11 files:   0%|          | 0/11 [00:00<?, ?it/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/manifest.ocdbt...
100%|██████████| 180/180 [00:00<00:00, 101kB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/d/b5a4695f4be0a2f41ec1e25616ebd7e7...
100%|██████████| 2.66k/2.66k [00:00<00:00, 5.36MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/descriptor/descriptor.pbtxt...
100%|██████████| 45.0/45.0 [00:00<00:00, 90.0kB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_METADATA...
100%|██████████| 55.3k/55.3k [00:00<00:00, 29.5MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_CHECKPOINT_METADATA...
100%|██████████| 92.0/92.0 [00:00<00:00, 234kB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/bf69258061ae5f35eb7a5669fe6877d4...
0%|          | 0.00/2.12G [00:00<?, ?B/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/fc20151969d7ca91ea9d8275bda0e219...
100%|██████████| 2.64k/2.64k [00:00<00:00, 5.58MB/s]

  0%|          | 2.00M/2.12G [00:00<01:48, 20.8MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/834bb4bf1e3854eb09f6208c95c071b2...
0%|          | 0.00/1.70G [00:00<?, ?B/s]
  0%|          | 9.00M/2.12G [00:00<00:46, 48.2MB/s]

  0%|          | 3.00M/1.70G [00:00<01:06, 27.6MB/s]
  1%|          | 14.0M/2.12G [00:00<00:46, 48.6MB/s]

  1%|          | 9.00M/1.70G [00:00<00:40, 44.5MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/manifest.ocdbt...
100%|██████████| 118/118 [00:00<00:00, 303kB/s]

  1%|          | 21.0M/2.12G [00:00<00:41, 53.7MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/checkpoint...
0%|          | 0.00/22.5k [00:00<?, ?B/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/tokenizer.model...
100%|██████████| 22.5k/22.5k [00:00<00:00, 24.7MB/s]


  1%|          | 17.0M/1.70G [00:00<00:36, 49.5MB/s]


  0%|          | 0.00/4.04M [00:00<?, ?B/s]
100%|██████████| 4.04M/4.04M [00:00<00:00, 64.6MB/s]


  1%|▏         | 24.0M/1.70G [00:00<00:34, 52.7MB/s]
  2%|▏         | 40.0M/2.12G [00:00<00:34, 64.6MB/s]

  2%|▏         | 33.0M/1.70G [00:00<00:27, 64.4MB/s]
  2%|▏         | 49.0M/2.12G [00:00<00:34, 64.8MB/s]

  3%|▎         | 47.0M/1.70G [00:00<00:20, 86.9MB/s]
  3%|▎         | 59.0M/2.12G [00:00<00:29, 74.4MB/s]

  3%|▎         | 56.0M/1.70G [00:00<00:24, 73.1MB/s]
  3%|▎         | 67.0M/2.12G [00:01<00:31, 70.1MB/s]

  4%|▎         | 64.0M/1.70G [00:01<00:25, 69.4MB/s]
  3%|▎         | 74.0M/2.12G [00:01<00:32, 67.4MB/s]

  4%|▍         | 73.0M/1.70G [00:01<00:23, 75.7MB/s]
  4%|▍         | 84.0M/2.12G [00:01<00:28, 75.5MB/s]

  5%|▍         | 81.0M/1.70G [00:01<00:22, 77.7MB/s]

  5%|▌         | 95.0M/1.70G [00:01<00:17, 96.5MB/s]
  4%|▍         | 92.0M/2.12G [00:01<00:38, 56.7MB/s]

  6%|▌         | 106M/1.70G [00:01<00:17, 101MB/s]  
  5%|▍         | 102M/2.12G [00:01<00:32, 67.2MB/s] 

  7%|▋         | 117M/1.70G [00:01<00:16, 102MB/s]
  5%|▌         | 110M/2.12G [00:01<00:30, 70.5MB/s]

  7%|▋         | 128M/1.70G [00:01<00:16, 105MB/s]
  5%|▌         | 119M/2.12G [00:01<00:28, 75.6MB/s]

  8%|▊         | 142M/1.70G [00:01<00:14, 117MB/s]
  6%|▌         | 129M/2.12G [00:02<00:30, 70.1MB/s]

  9%|▉         | 154M/1.70G [00:01<00:17, 92.5MB/s]
  6%|▋         | 138M/2.12G [00:02<00:28, 73.9MB/s]

  9%|▉         | 164M/1.70G [00:02<00:18, 87.7MB/s]
  7%|▋         | 146M/2.12G [00:02<00:30, 70.2MB/s]

 10%|▉         | 173M/1.70G [00:02<00:20, 81.7MB/s]
  7%|▋         | 153M/2.12G [00:02<00:33, 63.0MB/s]

 10%|█         | 182M/1.70G [00:02<00:19, 82.8MB/s]
  8%|▊         | 164M/2.12G [00:02<00:27, 75.3MB/s]

 11%|█         | 195M/1.70G [00:02<00:17, 90.8MB/s]
  8%|▊         | 174M/2.12G [00:02<00:25, 82.0MB/s]

 12%|█▏        | 207M/1.70G [00:02<00:16, 99.0MB/s]
  9%|▊         | 186M/2.12G [00:02<00:22, 92.9MB/s]

 13%|█▎        | 218M/1.70G [00:02<00:16, 99.7MB/s]
  9%|▉         | 196M/2.12G [00:02<00:22, 92.4MB/s]

 13%|█▎        | 229M/1.70G [00:02<00:15, 103MB/s] 
 10%|▉         | 206M/2.12G [00:02<00:22, 92.1MB/s]

 14%|█▎        | 239M/1.70G [00:02<00:15, 99.4MB/s]
 10%|▉         | 215M/2.12G [00:03<00:22, 91.3MB/s]

 14%|█▍        | 250M/1.70G [00:03<00:15, 101MB/s] 
 10%|█         | 226M/2.12G [00:03<00:21, 96.5MB/s]

 15%|█▌        | 263M/1.70G [00:03<00:14, 108MB/s]
 11%|█         | 238M/2.12G [00:03<00:19, 105MB/s] 
 11%|█▏        | 249M/2.12G [00:03<00:19, 103MB/s]

 16%|█▌        | 274M/1.70G [00:03<00:16, 91.6MB/s]
 12%|█▏        | 259M/2.12G [00:03<00:21, 93.3MB/s]

 16%|█▋        | 284M/1.70G [00:03<00:20, 76.0MB/s]
 12%|█▏        | 269M/2.12G [00:03<00:21, 94.3MB/s]

 17%|█▋        | 295M/1.70G [00:03<00:18, 84.0MB/s]
 13%|█▎        | 279M/2.12G [00:03<00:20, 94.2MB/s]

 17%|█▋        | 304M/1.70G [00:03<00:17, 84.4MB/s]
 13%|█▎        | 289M/2.12G [00:03<00:20, 94.9MB/s]

 18%|█▊        | 313M/1.70G [00:03<00:18, 81.9MB/s]
 14%|█▍        | 299M/2.12G [00:03<00:21, 91.4MB/s]
 14%|█▍        | 308M/2.12G [00:04<00:21, 89.4MB/s]

 18%|█▊        | 322M/1.70G [00:03<00:20, 73.5MB/s]

 19%|█▉        | 330M/1.70G [00:04<00:19, 74.9MB/s]
 15%|█▍        | 317M/2.12G [00:04<00:23, 81.1MB/s]
 15%|█▌        | 326M/2.12G [00:04<00:23, 83.6MB/s]

 19%|█▉        | 338M/1.70G [00:04<00:20, 72.0MB/s]

 20%|█▉        | 346M/1.70G [00:04<00:19, 74.6MB/s]
 15%|█▌        | 335M/2.12G [00:04<00:24, 79.2MB/s]

 20%|██        | 354M/1.70G [00:04<00:19, 75.0MB/s]
 16%|█▌        | 344M/2.12G [00:04<00:23, 81.4MB/s]
 16%|█▋        | 352M/2.12G [00:04<00:28, 67.3MB/s]

 21%|██        | 362M/1.70G [00:04<00:26, 54.3MB/s]
 17%|█▋        | 359M/2.12G [00:04<00:31, 59.6MB/s]

 21%|██        | 369M/1.70G [00:04<00:26, 53.4MB/s]
 17%|█▋        | 366M/2.12G [00:05<00:31, 59.0MB/s]

 22%|██▏       | 375M/1.70G [00:04<00:26, 54.9MB/s]
 17%|█▋        | 372M/2.12G [00:05<00:31, 59.2MB/s]

 22%|██▏       | 381M/1.70G [00:05<00:25, 56.2MB/s]
 17%|█▋        | 379M/2.12G [00:05<00:30, 62.3MB/s]

 22%|██▏       | 388M/1.70G [00:05<00:24, 56.8MB/s]
 18%|█▊        | 386M/2.12G [00:05<00:29, 63.8MB/s]

 23%|██▎       | 395M/1.70G [00:05<00:23, 60.2MB/s]
 18%|█▊        | 394M/2.12G [00:05<00:27, 68.5MB/s]

 23%|██▎       | 402M/1.70G [00:05<00:22, 62.7MB/s]
 19%|█▊        | 401M/2.12G [00:05<00:27, 66.3MB/s]

 23%|██▎       | 409M/1.70G [00:05<00:21, 64.4MB/s]
 19%|█▉        | 408M/2.12G [00:05<00:28, 65.4MB/s]

 24%|██▍       | 416M/1.70G [00:05<00:21, 65.4MB/s]

 24%|██▍       | 423M/1.70G [00:05<00:26, 51.4MB/s]
 19%|█▉        | 415M/2.12G [00:07<03:02, 10.1MB/s]

 25%|██▍       | 429M/1.70G [00:08<02:56, 7.79MB/s]
 19%|█▉        | 420M/2.12G [00:08<03:17, 9.28MB/s]

 25%|██▌       | 439M/1.70G [00:08<01:52, 12.2MB/s]
 20%|█▉        | 432M/2.12G [00:08<01:56, 15.7MB/s]

 26%|██▌       | 447M/1.70G [00:08<01:22, 16.5MB/s]
 20%|██        | 441M/2.12G [00:08<01:25, 21.1MB/s]

 26%|██▌       | 454M/1.70G [00:08<01:05, 20.5MB/s]
 21%|██        | 448M/2.12G [00:09<01:14, 24.0MB/s]

 26%|██▋       | 460M/1.70G [00:08<00:54, 24.4MB/s]

 27%|██▋       | 468M/1.70G [00:09<00:42, 31.6MB/s]
 21%|██        | 454M/2.12G [00:09<01:07, 26.4MB/s]
 21%|██▏       | 464M/2.12G [00:09<00:49, 36.4MB/s]

 27%|██▋       | 476M/1.70G [00:09<00:38, 34.4MB/s]

 28%|██▊       | 487M/1.70G [00:09<00:28, 47.0MB/s]
 22%|██▏       | 471M/2.12G [00:09<00:53, 33.2MB/s]

 28%|██▊       | 495M/1.70G [00:09<00:28, 46.0MB/s]
 22%|██▏       | 477M/2.12G [00:09<00:49, 36.0MB/s]

 29%|██▉       | 502M/1.70G [00:09<00:27, 47.6MB/s]

 29%|██▉       | 510M/1.70G [00:09<00:23, 54.1MB/s]
 22%|██▏       | 483M/2.12G [00:09<00:52, 33.9MB/s]

 30%|██▉       | 519M/1.70G [00:09<00:20, 62.0MB/s]
 23%|██▎       | 491M/2.12G [00:10<00:41, 41.9MB/s]

 30%|███       | 527M/1.70G [00:09<00:19, 65.6MB/s]
 23%|██▎       | 497M/2.12G [00:10<00:47, 37.1MB/s]
 23%|██▎       | 506M/2.12G [00:10<00:36, 47.1MB/s]

 31%|███       | 535M/1.70G [00:10<00:26, 47.1MB/s]
 24%|██▎       | 513M/2.12G [00:10<00:35, 49.5MB/s]

 31%|███       | 541M/1.70G [00:10<00:25, 49.2MB/s]
 24%|██▍       | 523M/2.12G [00:10<00:28, 60.8MB/s]

 32%|███▏      | 551M/1.70G [00:10<00:20, 60.3MB/s]
 24%|██▍       | 530M/2.12G [00:10<00:30, 56.8MB/s]

 32%|███▏      | 561M/1.70G [00:10<00:18, 65.7MB/s]
 25%|██▍       | 537M/2.12G [00:10<00:29, 58.3MB/s]

 33%|███▎      | 569M/1.70G [00:10<00:18, 67.2MB/s]
 25%|██▌       | 547M/2.12G [00:10<00:24, 68.2MB/s]

 33%|███▎      | 578M/1.70G [00:10<00:16, 73.2MB/s]
 26%|██▌       | 557M/2.12G [00:11<00:21, 77.0MB/s]

 34%|███▎      | 586M/1.70G [00:10<00:17, 71.0MB/s]

 34%|███▍      | 595M/1.70G [00:11<00:15, 76.1MB/s]
 26%|██▌       | 565M/2.12G [00:11<00:24, 69.2MB/s]

 35%|███▍      | 609M/1.70G [00:11<00:13, 88.9MB/s]
 26%|██▋       | 573M/2.12G [00:11<00:26, 63.3MB/s]

 35%|███▌      | 618M/1.70G [00:11<00:13, 90.0MB/s]
 27%|██▋       | 583M/2.12G [00:11<00:23, 71.8MB/s]

 36%|███▌      | 630M/1.70G [00:11<00:11, 99.5MB/s]

 37%|███▋      | 640M/1.70G [00:12<00:37, 31.0MB/s]
 27%|██▋       | 591M/2.12G [00:12<01:09, 23.8MB/s]

 37%|███▋      | 650M/1.70G [00:12<00:29, 38.7MB/s]
 28%|██▊       | 602M/2.12G [00:12<00:49, 32.9MB/s]
 28%|██▊       | 611M/2.12G [00:12<00:40, 40.3MB/s]

 38%|███▊      | 660M/1.70G [00:12<00:24, 46.6MB/s]

 39%|███▊      | 673M/1.70G [00:12<00:18, 60.3MB/s]
 29%|██▊       | 619M/2.12G [00:12<00:37, 43.2MB/s]

 39%|███▉      | 684M/1.70G [00:12<00:15, 69.5MB/s]
 29%|██▉       | 626M/2.12G [00:12<00:35, 45.0MB/s]

 40%|████      | 697M/1.70G [00:12<00:13, 79.8MB/s]
 29%|██▉       | 638M/2.12G [00:13<00:27, 59.2MB/s]

 41%|████      | 707M/1.70G [00:12<00:12, 83.7MB/s]
 30%|██▉       | 646M/2.12G [00:13<00:25, 63.4MB/s]

 41%|████      | 717M/1.70G [00:13<00:12, 88.5MB/s]
 30%|███       | 654M/2.12G [00:13<00:23, 67.5MB/s]
 31%|███       | 662M/2.12G [00:13<00:22, 70.8MB/s]

 42%|████▏     | 727M/1.70G [00:13<00:15, 67.7MB/s]

 42%|████▏     | 736M/1.70G [00:13<00:15, 68.8MB/s]
 31%|███       | 670M/2.12G [00:13<00:26, 58.5MB/s]

 43%|████▎     | 744M/1.70G [00:13<00:15, 67.3MB/s]
 31%|███▏      | 677M/2.12G [00:13<00:29, 53.2MB/s]

 43%|████▎     | 755M/1.70G [00:13<00:13, 77.3MB/s]
 32%|███▏      | 683M/2.12G [00:13<00:28, 54.4MB/s]

 44%|████▍     | 765M/1.70G [00:13<00:12, 83.9MB/s]
 32%|███▏      | 690M/2.12G [00:13<00:26, 58.6MB/s]

 44%|████▍     | 774M/1.70G [00:13<00:13, 77.1MB/s]
 32%|███▏      | 703M/2.12G [00:14<00:19, 77.2MB/s]

 45%|████▌     | 786M/1.70G [00:14<00:11, 88.4MB/s]
 33%|███▎      | 712M/2.12G [00:14<00:20, 73.5MB/s]

 46%|████▌     | 797M/1.70G [00:14<00:10, 94.8MB/s]
 33%|███▎      | 722M/2.12G [00:14<00:19, 79.4MB/s]

 46%|████▋     | 807M/1.70G [00:14<00:10, 93.8MB/s]
 34%|███▍      | 731M/2.12G [00:14<00:18, 81.6MB/s]

 47%|████▋     | 817M/1.70G [00:14<00:10, 90.0MB/s]
 34%|███▍      | 740M/2.12G [00:14<00:17, 83.8MB/s]

 48%|████▊     | 829M/1.70G [00:14<00:09, 98.2MB/s]
 35%|███▍      | 749M/2.12G [00:14<00:17, 84.2MB/s]

 48%|████▊     | 839M/1.70G [00:14<00:09, 95.3MB/s]
 35%|███▌      | 759M/2.12G [00:14<00:16, 89.8MB/s]
 36%|███▌      | 769M/2.12G [00:14<00:15, 93.3MB/s]

 49%|████▉     | 849M/1.70G [00:14<00:09, 93.8MB/s]
 36%|███▌      | 780M/2.12G [00:14<00:14, 97.7MB/s]

 49%|████▉     | 859M/1.70G [00:14<00:10, 91.0MB/s]
 37%|███▋      | 793M/2.12G [00:15<00:13, 106MB/s] 

 50%|████▉     | 868M/1.70G [00:14<00:10, 89.9MB/s]
 37%|███▋      | 804M/2.12G [00:15<00:13, 107MB/s]

 50%|█████     | 877M/1.70G [00:15<00:10, 87.0MB/s]

 51%|█████     | 886M/1.70G [00:15<00:10, 85.0MB/s]
 38%|███▊      | 815M/2.12G [00:15<00:16, 84.8MB/s]

 51%|█████▏    | 895M/1.70G [00:15<00:12, 69.5MB/s]
 38%|███▊      | 824M/2.12G [00:15<00:18, 74.1MB/s]

 52%|█████▏    | 904M/1.70G [00:15<00:11, 73.7MB/s]
 38%|███▊      | 832M/2.12G [00:15<00:18, 75.1MB/s]

 52%|█████▏    | 912M/1.70G [00:15<00:11, 75.6MB/s]
 39%|███▉      | 843M/2.12G [00:15<00:16, 83.7MB/s]
 40%|███▉      | 856M/2.12G [00:15<00:14, 95.7MB/s]

 53%|█████▎    | 921M/1.70G [00:15<00:12, 71.1MB/s]
 40%|███▉      | 866M/2.12G [00:15<00:13, 97.5MB/s]

 53%|█████▎    | 931M/1.70G [00:15<00:10, 77.9MB/s]
 41%|████      | 878M/2.12G [00:16<00:12, 104MB/s] 

 54%|█████▍    | 939M/1.70G [00:16<00:11, 70.3MB/s]
 41%|████      | 889M/2.12G [00:16<00:12, 104MB/s]

 55%|█████▍    | 950M/1.70G [00:16<00:10, 80.9MB/s]

 56%|█████▌    | 967M/1.70G [00:16<00:07, 105MB/s] 
 42%|████▏     | 900M/2.12G [00:16<00:17, 73.9MB/s]

 56%|█████▌    | 978M/1.70G [00:16<00:07, 105MB/s]
 42%|████▏     | 909M/2.12G [00:16<00:17, 76.9MB/s]

 57%|█████▋    | 989M/1.70G [00:16<00:07, 103MB/s]
 43%|████▎     | 921M/2.12G [00:16<00:14, 87.9MB/s]

 57%|█████▋    | 0.98G/1.70G [00:16<00:07, 105MB/s]

 58%|█████▊    | 0.99G/1.70G [00:16<00:06, 110MB/s]
 43%|████▎     | 931M/2.12G [00:16<00:15, 81.4MB/s]
 43%|████▎     | 940M/2.12G [00:16<00:15, 82.6MB/s]

 59%|█████▊    | 1.00G/1.70G [00:16<00:09, 76.3MB/s]
 44%|████▍     | 949M/2.12G [00:17<00:18, 70.7MB/s]
 44%|████▍     | 957M/2.12G [00:17<00:18, 67.3MB/s]

 59%|█████▉    | 1.01G/1.70G [00:17<00:11, 64.5MB/s]
 45%|████▍     | 964M/2.12G [00:17<00:19, 65.9MB/s]

 60%|█████▉    | 1.02G/1.70G [00:17<00:11, 64.5MB/s]
 45%|████▍     | 971M/2.12G [00:17<00:19, 65.2MB/s]

 60%|██████    | 1.02G/1.70G [00:17<00:11, 63.6MB/s]
 45%|████▌     | 978M/2.12G [00:17<00:19, 63.6MB/s]

 61%|██████    | 1.03G/1.70G [00:17<00:11, 62.9MB/s]
 45%|████▌     | 985M/2.12G [00:17<00:19, 64.7MB/s]

 61%|██████    | 1.04G/1.70G [00:17<00:11, 62.8MB/s]
 46%|████▌     | 992M/2.12G [00:17<00:18, 65.3MB/s]

 61%|██████▏   | 1.04G/1.70G [00:17<00:10, 64.5MB/s]
 46%|████▌     | 0.98G/2.12G [00:17<00:17, 68.9MB/s]

 62%|██████▏   | 1.05G/1.70G [00:17<00:10, 66.5MB/s]
 46%|████▋     | 0.98G/2.12G [00:18<00:17, 69.8MB/s]

 62%|██████▏   | 1.06G/1.70G [00:17<00:10, 67.7MB/s]
 47%|████▋     | 0.99G/2.12G [00:18<00:16, 73.2MB/s]

 63%|██████▎   | 1.07G/1.70G [00:18<00:09, 69.0MB/s]
 47%|████▋     | 1.00G/2.12G [00:18<00:16, 72.2MB/s]

 63%|██████▎   | 1.07G/1.70G [00:18<00:09, 68.5MB/s]
 48%|████▊     | 1.01G/2.12G [00:18<00:16, 73.8MB/s]

 63%|██████▎   | 1.08G/1.70G [00:18<00:09, 69.1MB/s]
 48%|████▊     | 1.01G/2.12G [00:18<00:18, 63.5MB/s]

 64%|██████▍   | 1.09G/1.70G [00:18<00:10, 61.4MB/s]
 48%|████▊     | 1.02G/2.12G [00:18<00:20, 57.1MB/s]

 64%|██████▍   | 1.09G/1.70G [00:18<00:11, 55.9MB/s]
 49%|████▊     | 1.03G/2.12G [00:18<00:20, 57.9MB/s]

 65%|██████▍   | 1.10G/1.70G [00:18<00:11, 56.5MB/s]
 49%|████▉     | 1.04G/2.12G [00:18<00:18, 63.5MB/s]

 65%|██████▍   | 1.10G/1.70G [00:18<00:11, 57.4MB/s]
 49%|████▉     | 1.04G/2.12G [00:19<00:18, 63.4MB/s]

 65%|██████▌   | 1.11G/1.70G [00:18<00:10, 58.5MB/s]
 50%|████▉     | 1.05G/2.12G [00:19<00:17, 64.7MB/s]

 66%|██████▌   | 1.12G/1.70G [00:19<00:10, 61.8MB/s]
 50%|████▉     | 1.06G/2.12G [00:19<00:16, 67.6MB/s]

 66%|██████▌   | 1.12G/1.70G [00:19<00:09, 63.1MB/s]
 50%|█████     | 1.06G/2.12G [00:19<00:15, 70.6MB/s]

 67%|██████▋   | 1.13G/1.70G [00:19<00:08, 69.1MB/s]
 51%|█████     | 1.07G/2.12G [00:19<00:15, 72.6MB/s]

 67%|██████▋   | 1.14G/1.70G [00:19<00:08, 71.4MB/s]
 51%|█████     | 1.08G/2.12G [00:19<00:15, 73.6MB/s]

 68%|██████▊   | 1.15G/1.70G [00:19<00:07, 74.3MB/s]
 51%|█████▏    | 1.09G/2.12G [00:19<00:14, 76.0MB/s]

 68%|██████▊   | 1.16G/1.70G [00:19<00:07, 74.0MB/s]
 52%|█████▏    | 1.10G/2.12G [00:19<00:15, 69.1MB/s]

 69%|██████▊   | 1.17G/1.70G [00:19<00:08, 69.9MB/s]
 52%|█████▏    | 1.10G/2.12G [00:19<00:15, 70.8MB/s]

 69%|██████▉   | 1.17G/1.70G [00:19<00:08, 70.0MB/s]
 52%|█████▏    | 1.11G/2.12G [00:20<00:16, 66.4MB/s]

 69%|██████▉   | 1.18G/1.70G [00:19<00:09, 60.2MB/s]

 70%|██████▉   | 1.19G/1.70G [00:20<00:08, 62.5MB/s]
 53%|█████▎    | 1.12G/2.12G [00:20<00:19, 54.8MB/s]

 70%|███████   | 1.19G/1.70G [00:20<00:08, 63.8MB/s]
 53%|█████▎    | 1.12G/2.12G [00:20<00:18, 57.7MB/s]

 71%|███████   | 1.20G/1.70G [00:20<00:08, 64.8MB/s]
 53%|█████▎    | 1.13G/2.12G [00:20<00:17, 61.3MB/s]

 71%|███████   | 1.21G/1.70G [00:20<00:07, 68.3MB/s]
 54%|█████▍    | 1.14G/2.12G [00:20<00:16, 65.0MB/s]

 71%|███████▏  | 1.21G/1.70G [00:20<00:07, 66.1MB/s]
 54%|█████▍    | 1.15G/2.12G [00:20<00:16, 64.4MB/s]

 72%|███████▏  | 1.22G/1.70G [00:20<00:07, 66.4MB/s]
 54%|█████▍    | 1.15G/2.12G [00:20<00:16, 63.0MB/s]

 72%|███████▏  | 1.23G/1.70G [00:20<00:08, 61.2MB/s]
 55%|█████▍    | 1.16G/2.12G [00:20<00:16, 61.6MB/s]

 73%|███████▎  | 1.23G/1.70G [00:20<00:08, 58.0MB/s]
 55%|█████▌    | 1.17G/2.12G [00:21<00:16, 61.0MB/s]
 55%|█████▌    | 1.17G/2.12G [00:22<01:11, 14.1MB/s]

 73%|███████▎  | 1.24G/1.70G [00:22<00:37, 13.4MB/s]
 56%|█████▌    | 1.18G/2.12G [00:22<00:51, 19.6MB/s]

 73%|███████▎  | 1.25G/1.70G [00:22<00:23, 20.3MB/s]
 56%|█████▌    | 1.19G/2.12G [00:22<00:42, 23.4MB/s]

 74%|███████▍  | 1.25G/1.70G [00:22<00:19, 24.2MB/s]

 74%|███████▍  | 1.26G/1.70G [00:22<00:13, 34.0MB/s]

 75%|███████▌  | 1.28G/1.70G [00:22<00:08, 50.6MB/s]

 76%|███████▌  | 1.29G/1.70G [00:22<00:07, 59.8MB/s]
 57%|█████▋    | 1.20G/2.12G [00:23<00:35, 27.6MB/s]
 57%|█████▋    | 1.21G/2.12G [00:23<00:26, 36.3MB/s]

 76%|███████▋  | 1.30G/1.70G [00:23<00:07, 57.6MB/s]

 77%|███████▋  | 1.31G/1.70G [00:23<00:06, 62.4MB/s]
 57%|█████▋    | 1.21G/2.12G [00:23<00:27, 35.1MB/s]
 58%|█████▊    | 1.22G/2.12G [00:23<00:24, 38.9MB/s]

 77%|███████▋  | 1.31G/1.70G [00:23<00:07, 53.2MB/s]
 58%|█████▊    | 1.23G/2.12G [00:23<00:22, 43.0MB/s]

 78%|███████▊  | 1.32G/1.70G [00:23<00:06, 61.9MB/s]

 78%|███████▊  | 1.33G/1.70G [00:23<00:05, 68.7MB/s]
 58%|█████▊    | 1.24G/2.12G [00:23<00:20, 46.8MB/s]

 79%|███████▉  | 1.34G/1.70G [00:23<00:05, 72.2MB/s]
 59%|█████▉    | 1.24G/2.12G [00:23<00:20, 46.0MB/s]

 80%|███████▉  | 1.35G/1.70G [00:23<00:04, 77.2MB/s]

 80%|███████▉  | 1.36G/1.70G [00:23<00:04, 74.6MB/s]
 59%|█████▉    | 1.25G/2.12G [00:24<00:19, 47.6MB/s]

 81%|████████  | 1.37G/1.70G [00:24<00:04, 79.9MB/s]
 60%|█████▉    | 1.26G/2.12G [00:24<00:16, 56.2MB/s]

 81%|████████  | 1.38G/1.70G [00:24<00:03, 88.6MB/s]
 60%|█████▉    | 1.27G/2.12G [00:24<00:18, 48.6MB/s]

 82%|████████▏ | 1.39G/1.70G [00:24<00:03, 87.9MB/s]
 60%|██████    | 1.27G/2.12G [00:24<00:16, 55.1MB/s]

 82%|████████▏ | 1.40G/1.70G [00:24<00:03, 81.4MB/s]
 61%|██████    | 1.28G/2.12G [00:24<00:14, 62.4MB/s]

 83%|████████▎ | 1.41G/1.70G [00:24<00:03, 82.2MB/s]
 61%|██████    | 1.29G/2.12G [00:24<00:14, 62.8MB/s]

 83%|████████▎ | 1.42G/1.70G [00:24<00:03, 85.9MB/s]
 61%|██████▏   | 1.30G/2.12G [00:24<00:13, 64.0MB/s]

 84%|████████▍ | 1.43G/1.70G [00:24<00:02, 99.6MB/s]

 85%|████████▍ | 1.45G/1.70G [00:24<00:02, 109MB/s] 
 62%|██████▏   | 1.31G/2.12G [00:25<00:15, 57.2MB/s]

 86%|████████▌ | 1.46G/1.70G [00:25<00:02, 110MB/s]
 62%|██████▏   | 1.32G/2.12G [00:25<00:12, 69.9MB/s]

 86%|████████▌ | 1.47G/1.70G [00:25<00:02, 110MB/s]
 63%|██████▎   | 1.33G/2.12G [00:25<00:11, 74.1MB/s]

 87%|████████▋ | 1.48G/1.70G [00:25<00:02, 102MB/s]
 63%|██████▎   | 1.34G/2.12G [00:25<00:10, 82.6MB/s]

 87%|████████▋ | 1.49G/1.70G [00:25<00:02, 96.1MB/s]
 64%|██████▎   | 1.34G/2.12G [00:25<00:09, 85.4MB/s]

 88%|████████▊ | 1.50G/1.70G [00:25<00:02, 106MB/s] 
 64%|██████▍   | 1.35G/2.12G [00:25<00:11, 71.7MB/s]

 89%|████████▉ | 1.52G/1.70G [00:25<00:01, 119MB/s]
 65%|██████▍   | 1.37G/2.12G [00:25<00:09, 84.5MB/s]

 90%|████████▉ | 1.53G/1.70G [00:25<00:01, 117MB/s]
 65%|██████▍   | 1.37G/2.12G [00:25<00:11, 69.7MB/s]

 91%|█████████ | 1.54G/1.70G [00:25<00:01, 99.4MB/s]
 65%|██████▌   | 1.38G/2.12G [00:26<00:10, 74.7MB/s]

 91%|█████████ | 1.55G/1.70G [00:25<00:01, 99.8MB/s]
 66%|██████▌   | 1.39G/2.12G [00:26<00:10, 74.7MB/s]

 92%|█████████▏| 1.56G/1.70G [00:26<00:01, 102MB/s] 
 66%|██████▋   | 1.40G/2.12G [00:26<00:09, 83.9MB/s]

 93%|█████████▎| 1.57G/1.70G [00:26<00:01, 108MB/s]
 67%|██████▋   | 1.41G/2.12G [00:26<00:08, 91.4MB/s]

 93%|█████████▎| 1.58G/1.70G [00:26<00:01, 100MB/s]
 67%|██████▋   | 1.42G/2.12G [00:26<00:08, 90.9MB/s]

 94%|█████████▎| 1.59G/1.70G [00:26<00:01, 87.1MB/s]
 68%|██████▊   | 1.43G/2.12G [00:26<00:08, 86.6MB/s]

 94%|█████████▍| 1.60G/1.70G [00:26<00:01, 82.8MB/s]
 68%|██████▊   | 1.44G/2.12G [00:26<00:10, 70.8MB/s]

 95%|█████████▍| 1.61G/1.70G [00:26<00:01, 78.2MB/s]
 68%|██████▊   | 1.45G/2.12G [00:26<00:09, 73.6MB/s]

 95%|█████████▌| 1.62G/1.70G [00:26<00:01, 83.3MB/s]
 69%|██████▉   | 1.46G/2.12G [00:27<00:08, 80.8MB/s]

 96%|█████████▌| 1.63G/1.70G [00:26<00:00, 85.3MB/s]
 69%|██████▉   | 1.47G/2.12G [00:27<00:08, 81.4MB/s]

 96%|█████████▋| 1.64G/1.70G [00:27<00:00, 87.5MB/s]
 70%|██████▉   | 1.48G/2.12G [00:27<00:07, 86.9MB/s]

 97%|█████████▋| 1.65G/1.70G [00:27<00:00, 70.2MB/s]
 70%|███████   | 1.48G/2.12G [00:27<00:10, 67.4MB/s]

 97%|█████████▋| 1.66G/1.70G [00:27<00:00, 75.5MB/s]
 71%|███████   | 1.49G/2.12G [00:27<00:09, 71.1MB/s]

 98%|█████████▊| 1.67G/1.70G [00:27<00:00, 82.3MB/s]
 71%|███████   | 1.50G/2.12G [00:27<00:08, 74.9MB/s]

 99%|█████████▊| 1.68G/1.70G [00:27<00:00, 90.1MB/s]
 71%|███████▏  | 1.51G/2.12G [00:27<00:08, 75.7MB/s]

 99%|█████████▉| 1.69G/1.70G [00:27<00:00, 89.7MB/s]
 72%|███████▏  | 1.52G/2.12G [00:27<00:08, 79.7MB/s]

100%|██████████| 1.70G/1.70G [00:27<00:00, 65.5MB/s]

 72%|███████▏  | 1.53G/2.12G [00:28<00:08, 76.6MB/s]
 73%|███████▎  | 1.54G/2.12G [00:28<00:06, 98.0MB/s]
 74%|███████▎  | 1.56G/2.12G [00:28<00:05, 112MB/s] 
 74%|███████▍  | 1.57G/2.12G [00:28<00:05, 105MB/s]
 75%|███████▍  | 1.58G/2.12G [00:28<00:05, 107MB/s]
 75%|███████▌  | 1.59G/2.12G [00:28<00:06, 89.3MB/s]
 76%|███████▌  | 1.61G/2.12G [00:28<00:05, 101MB/s] 
 77%|███████▋  | 1.62G/2.12G [00:28<00:04, 112MB/s]
 77%|███████▋  | 1.63G/2.12G [00:29<00:05, 92.3MB/s]
 78%|███████▊  | 1.64G/2.12G [00:29<00:06, 78.4MB/s]
 78%|███████▊  | 1.66G/2.12G [00:29<00:05, 95.5MB/s]
 79%|███████▉  | 1.67G/2.12G [00:29<00:04, 101MB/s] 
 80%|███████▉  | 1.69G/2.12G [00:29<00:04, 114MB/s]
 80%|████████  | 1.70G/2.12G [00:29<00:03, 124MB/s]
 81%|████████  | 1.71G/2.12G [00:29<00:03, 122MB/s]
 82%|████████▏ | 1.73G/2.12G [00:30<00:04, 95.5MB/s]
 82%|████████▏ | 1.74G/2.12G [00:30<00:03, 104MB/s] 
 83%|████████▎ | 1.75G/2.12G [00:30<00:03, 103MB/s]
 83%|████████▎ | 1.76G/2.12G [00:30<00:04, 76.8MB/s]
 84%|████████▍ | 1.78G/2.12G [00:30<00:03, 96.8MB/s]
 85%|████████▍ | 1.79G/2.12G [00:30<00:03, 102MB/s] 
 85%|████████▌ | 1.80G/2.12G [00:31<00:04, 69.5MB/s]
 86%|████████▌ | 1.82G/2.12G [00:31<00:03, 92.2MB/s]
 87%|████████▋ | 1.83G/2.12G [00:31<00:03, 91.5MB/s]
 87%|████████▋ | 1.84G/2.12G [00:31<00:02, 98.1MB/s]
 88%|████████▊ | 1.85G/2.12G [00:31<00:03, 85.1MB/s]
 88%|████████▊ | 1.86G/2.12G [00:31<00:03, 88.0MB/s]
 89%|████████▊ | 1.87G/2.12G [00:31<00:02, 88.9MB/s]
 89%|████████▉ | 1.88G/2.12G [00:32<00:02, 93.5MB/s]
 90%|████████▉ | 1.90G/2.12G [00:32<00:02, 106MB/s] 
 90%|█████████ | 1.91G/2.12G [00:32<00:01, 111MB/s]
 91%|█████████ | 1.92G/2.12G [00:32<00:02, 98.7MB/s]
 91%|█████████▏| 1.93G/2.12G [00:32<00:01, 107MB/s] 
 92%|█████████▏| 1.95G/2.12G [00:32<00:01, 104MB/s]
 93%|█████████▎| 1.96G/2.12G [00:32<00:01, 117MB/s]
 93%|█████████▎| 1.97G/2.12G [00:32<00:01, 106MB/s]
 94%|█████████▍| 1.98G/2.12G [00:33<00:01, 92.6MB/s]
 94%|█████████▍| 1.99G/2.12G [00:33<00:01, 86.4MB/s]
 95%|█████████▍| 2.00G/2.12G [00:33<00:01, 68.3MB/s]
 95%|█████████▌| 2.02G/2.12G [00:33<00:01, 84.0MB/s]
 96%|█████████▌| 2.03G/2.12G [00:33<00:01, 91.6MB/s]
 96%|█████████▋| 2.04G/2.12G [00:33<00:00, 96.2MB/s]
 97%|█████████▋| 2.05G/2.12G [00:33<00:00, 108MB/s] 
 98%|█████████▊| 2.06G/2.12G [00:33<00:00, 89.9MB/s]
 98%|█████████▊| 2.08G/2.12G [00:34<00:00, 103MB/s] 
 99%|█████████▉| 2.09G/2.12G [00:34<00:00, 115MB/s]
100%|██████████| 2.12G/2.12G [00:34<00:00, 66.0MB/s]
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1
  1. Sprawdź lokalizację wag modelu i tokenizatora, a następnie ustaw zmienne ścieżki. Katalog tokenizera znajduje się w katalogu głównym, z którego został pobrany model, a wagi modelu – w podkatalogu. Na przykład:
  • Plik tokenizer.model będzie w lokalizacji /LOCAL/PATH/TO/gemma/flax/2b-it/2.
  • Punkt kontrolny modelu będzie w: /LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it.
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/gemma2-2b-it
TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/tokenizer.model

Przeprowadź próbkowanie/wnioskowanie

  1. Wczytaj i sformatuj punkt kontrolny modelu Gemma za pomocą metody gemma.params.load_and_format_params:
from gemma import params as params_lib

params = params_lib.load_and_format_params(CKPT_PATH)
  1. Wczytaj tokenizer Gemma utworzony za pomocą sentencepiece.SentencePieceProcessor:
import sentencepiece as spm

vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
  1. Aby automatycznie wczytywać prawidłową konfigurację z punktu kontrolnego modelu Gemma, użyj narzędzia gemma.transformer.TransformerConfig. Argument cache_size to liczba kroków czasu w pamięci podręcznej aplikacji Gemma Transformer. Następnie utwórz instancję modelu Gemma jako transformer z użyciem gemma.transformer.Transformer (dziedziczącego z flax.linen.Module).
from gemma import transformer as transformer_lib

transformer_config = transformer_lib.TransformerConfig.from_params(
    params=params,
    cache_size=1024
)

transformer = transformer_lib.Transformer(transformer_config)
  1. Utwórz element sampler z parametrem gemma.sampler.Sampler nad punktem kontrolnym/wagami modelu Gemma i tokenizatorem:
from gemma import sampler as sampler_lib

sampler = sampler_lib.Sampler(
    transformer=transformer,
    vocab=vocab,
    params=params['transformer'],
)
  1. Wpisz prompt w języku input_batch i wykonaj wnioskowanie. Możesz dostosować total_generation_steps (liczbę kroków wykonanych podczas generowania odpowiedzi – w tym przykładzie użyto 100 do zachowania pamięci hosta).
prompt = [
    "what is JAX in 3 bullet points?",
]

reply = sampler(input_strings=prompt,
                total_generation_steps=128,
                )

for input_string, out_string in zip(prompt, reply.text):
    print(f"Prompt:\n{input_string}\nOutput:\n{out_string}")
Prompt:
what is JAX in 3 bullet points?
Output:


* **High-performance numerical computation:** JAX leverages the power of GPUs and TPUs to accelerate complex mathematical operations, making it ideal for scientific computing, machine learning, and data analysis.
* **Automatic differentiation:** JAX provides automatic differentiation capabilities, allowing you to compute gradients and optimize models efficiently. This simplifies the process of training deep learning models.
* **Functional programming:** JAX embraces functional programming principles, promoting code readability and maintainability. It offers a flexible and expressive syntax for defining and manipulating data. 


<end_of_turn>
  1. (Opcjonalnie) Uruchom tę komórkę, aby zwolnić pamięć, jeśli notatnik został już ukończony i chcesz wypróbować inny prompt. Potem w kroku 3 możesz ponownie utworzyć instancję sampler, a następnie dostosować i uruchomić prompt w kroku 4.
del sampler

Więcej informacji