Tuning

پشتیبانی از تنظیم دقیق API مربوط به Gemini، مکانیزمی را برای انتخاب خروجی در زمانی که مجموعه داده کوچکی از نمونه‌های ورودی/خروجی دارید، فراهم می‌کند. برای جزئیات بیشتر، به راهنما و آموزش تنظیم مدل مراجعه کنید.

روش: tunedModels.create

یک مدل تنظیم‌شده ایجاد می‌کند. پیشرفت تنظیم میانی (در صورت وجود) را از طریق سرویس google.longrunning.Operations بررسی کنید.

دسترسی به وضعیت و نتایج از طریق سرویس Operations. مثال: GET /v1/tunedModels/az2mb0bpw6i/operations/000-111-222

نقطه پایانی

پست https: / /generativelanguage.googleapis.com /v1beta /tunedModels

پارامترهای پرس و جو

string tunedModelId

اختیاری. شناسه منحصر به فرد برای مدل تنظیم‌شده در صورت مشخص شدن. این مقدار باید حداکثر ۴۰ کاراکتر باشد، اولین کاراکتر باید یک حرف باشد، آخرین کاراکتر می‌تواند یک حرف یا عدد باشد. شناسه باید با عبارت منظم زیر مطابقت داشته باشد: [az]([a-z0-9-]{0,38}[a-z0-9])? .

درخواست بدنه

بدنه درخواست شامل یک نمونه از TunedModel است.

فیلدها
string displayName

اختیاری. نامی که برای این مدل در رابط‌های کاربری نمایش داده می‌شود. نام نمایشی باید حداکثر ۴۰ کاراکتر شامل فاصله‌ها باشد.

string description

اختیاری. شرح مختصری از این مدل.

شیء tuningTask object ( TuningTask )

الزامی. وظیفه تنظیم که مدل تنظیم‌شده را ایجاد می‌کند.

رشته readerProjectNumbers[] string ( int64 format)

اختیاری. فهرست شماره پروژه‌هایی که دسترسی خواندن به مدل تنظیم‌شده را دارند.

Union type source_model
مدلی که به عنوان نقطه شروع برای تنظیم استفاده می‌شود. source_model می‌تواند فقط یکی از موارد زیر باشد:
شیء tunedModelSource object ( TunedModelSource )

اختیاری. TunedModel برای استفاده به عنوان نقطه شروع آموزش مدل جدید.

string baseModel

تغییرناپذیر. نام Model که قرار است تنظیم شود. مثال: models/gemini-1.5-flash-001

number temperature

اختیاری. تصادفی بودن خروجی را کنترل می‌کند.

مقادیر می‌توانند شامل [0.0,1.0] باشند. مقداری نزدیک‌تر به 1.0 پاسخ‌هایی با تنوع بیشتر تولید می‌کند، در حالی که مقداری نزدیک‌تر به 0.0 معمولاً منجر به پاسخ‌های کمتر شگفت‌انگیز از مدل می‌شود.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

number topP

اختیاری. برای نمونه‌برداری هسته.

نمونه‌گیری هسته‌ای، کوچکترین مجموعه از توکن‌ها را در نظر می‌گیرد که مجموع احتمال آنها حداقل topP باشد.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

integer topK

اختیاری. برای نمونه‌برداری Top-k.

نمونه‌گیری Top-k، مجموعه‌ای از محتمل‌ترین توکن‌های topK را در نظر می‌گیرد. این مقدار، مقدار پیش‌فرضی را که باید توسط backend هنگام فراخوانی مدل استفاده شود، مشخص می‌کند.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

درخواست نمونه

پایتون

# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

بدنه پاسخ

در صورت موفقیت، بدنه پاسخ شامل یک نمونه تازه ایجاد شده از Operation است.

متد: tunedModels.generateContent

با دریافت ورودی GenerateContentRequest یک پاسخ مدل تولید می‌کند. برای اطلاعات دقیق در مورد نحوه‌ی استفاده، به راهنمای تولید متن مراجعه کنید. قابلیت‌های ورودی بین مدل‌ها، از جمله مدل‌های تنظیم‌شده، متفاوت است. برای جزئیات بیشتر به راهنمای مدل و راهنمای تنظیم مراجعه کنید.

نقطه پایانی

پست https: / /generativelanguage.googleapis.com /v1beta /{model=tunedModels /*}:generateContent

پارامترهای مسیر

string model

الزامی. نام Model که برای تولید تکمیل استفاده می‌شود.

قالب: models/{model} . این قالب به صورت tunedModels/{tunedmodel} است.

درخواست بدنه

بدنه درخواست شامل داده‌هایی با ساختار زیر است:

فیلدها
contents[] object ( Content )

الزامی. محتوای مکالمه فعلی با مدل.

برای پرس‌وجوهای تک نوبتی، این یک نمونه واحد است. برای پرس‌وجوهای چند نوبتی مانند چت ، این یک فیلد تکراری است که شامل سابقه مکالمه و آخرین درخواست است.

شیء tools[] object ( Tool )

اختیاری. فهرستی از Tools Model ممکن است برای تولید پاسخ بعدی استفاده کند.

یک Tool ، قطعه کدی است که سیستم را قادر می‌سازد تا با سیستم‌های خارجی تعامل داشته باشد تا یک یا مجموعه‌ای از اقدامات را خارج از دانش و محدوده Model انجام دهد. Tool پشتیبانی شده عبارتند از Function و codeExecution . برای کسب اطلاعات بیشتر به راهنماهای فراخوانی تابع (Function calling ) و اجرای کد (Code execution) مراجعه کنید.

شیء toolConfig object ( ToolConfig )

اختیاری. پیکربندی ابزار برای هر Tool که در درخواست مشخص شده است. برای مثال استفاده به راهنمای فراخوانی تابع مراجعه کنید.

شیء safetySettings[] object ( SafetySetting )

اختیاری. فهرستی از نمونه‌های منحصر به فرد SafetySetting برای مسدود کردن محتوای ناامن.

این مورد روی GenerateContentRequest.contents و GenerateContentResponse.candidates اعمال خواهد شد. برای هر نوع SafetyCategory نباید بیش از یک تنظیم وجود داشته باشد. API هر محتوا و پاسخی را که آستانه‌های تعیین‌شده توسط این تنظیمات را برآورده نکند، مسدود می‌کند. این لیست، تنظیمات پیش‌فرض برای هر SafetyCategory مشخص‌شده در safetySettings را لغو می‌کند. اگر هیچ SafetySetting برای یک SafetyCategory مشخص‌شده در لیست وجود نداشته باشد، API از تنظیم ایمنی پیش‌فرض برای آن دسته استفاده خواهد کرد. دسته‌های آسیب HARM_CATEGORY_HATE_SPEECH، HARM_CATEGORY_SEXUALLY_EXPLICIT، HARM_CATEGORY_DANGEROUS_CONTENT، HARM_CATEGORY_HARASSMENT، HARM_CATEGORY_CIVIC_INTEGRITY پشتیبانی می‌شوند. برای اطلاعات دقیق در مورد تنظیمات ایمنی موجود، به راهنما مراجعه کنید. همچنین برای یادگیری نحوه لحاظ کردن ملاحظات ایمنی در برنامه‌های هوش مصنوعی خود، به راهنمای ایمنی مراجعه کنید.

شیء systemInstruction object ( Content )

اختیاری. دستورالعمل(های) سیستم توسط توسعه‌دهنده تنظیم می‌شود. در حال حاضر، فقط متن.

شیء generationConfig object ( GenerationConfig )

اختیاری. گزینه‌های پیکربندی برای تولید مدل و خروجی‌ها.

string cachedContent

اختیاری. نام محتوای ذخیره شده برای استفاده به عنوان زمینه برای ارائه پیش‌بینی. قالب: cachedContents/{cachedContent}

درخواست نمونه

متن

پایتون

from google import genai

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-flash", contents="Write a story about a magic backpack."
)
print(response.text)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}
contents := []*genai.Content{
	genai.NewContentFromText("Write a story about a magic backpack.", genai.RoleUser),
}
response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

پوسته

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{"text": "Write a story about a magic backpack."}]
        }]
       }' 2> /dev/null

جاوا

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

تصویر

پایتون

from google import genai
import PIL.Image

client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
response = client.models.generate_content(
    model="gemini-2.0-flash", contents=["Tell me about this instrument", organ]
)
print(response.text)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const organ = await ai.files.upload({
  file: path.join(media, "organ.jpg"),
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me about this instrument", 
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "organ.jpg"), 
	&genai.UploadFileConfig{
		MIMEType : "image/jpeg",
	},
)
if err != nil {
	log.Fatal(err)
}
parts := []*genai.Part{
	genai.NewPartFromText("Tell me about this instrument"),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}

response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

پوسته

# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"

# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT

cat > "$TEMP_JSON" << EOF
{
  "contents": [{
    "parts":[
      {"text": "Tell me about this instrument"},
      {
        "inline_data": {
          "mime_type":"image/jpeg",
          "data": "$(cat "$TEMP_B64")"
        }
      }
    ]
  }]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d "@$TEMP_JSON" 2> /dev/null

جاوا

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image = BitmapFactory.decodeResource(context.getResources(), R.drawable.image);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

صوتی

پایتون

from google import genai

client = genai.Client()
sample_audio = client.files.upload(file=media / "sample.mp3")
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this audio file.", sample_audio],
)
print(response.text)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const audio = await ai.files.upload({
  file: path.join(media, "sample.mp3"),
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Give me a summary of this audio file.",
      createPartFromUri(audio.uri, audio.mimeType),
    ]),
  ],
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "sample.mp3"), 
	&genai.UploadFileConfig{
		MIMEType : "audio/mpeg",
	},
)
if err != nil {
	log.Fatal(err)
}

parts := []*genai.Part{
	genai.NewPartFromText("Give me a summary of this audio file."),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}

contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}

response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

پوسته

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

ویدئو

پایتون

from google import genai
import time

client = genai.Client()
# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = client.files.upload(file=media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Poll until the video file is completely processed (state becomes ACTIVE).
while not myfile.state or myfile.state.name != "ACTIVE":
    print("Processing video...")
    print("File state:", myfile.state)
    time.sleep(5)
    myfile = client.files.get(name=myfile.name)

response = client.models.generate_content(
    model="gemini-2.0-flash", contents=[myfile, "Describe this video clip"]
)
print(f"{response.text=}")

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

let video = await ai.files.upload({
  file: path.join(media, 'Big_Buck_Bunny.mp4'),
});

// Poll until the video file is completely processed (state becomes ACTIVE).
while (!video.state || video.state.toString() !== 'ACTIVE') {
  console.log('Processing video...');
  console.log('File state: ', video.state);
  await sleep(5000);
  video = await ai.files.get({name: video.name});
}

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Describe this video clip",
      createPartFromUri(video.uri, video.mimeType),
    ]),
  ],
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "Big_Buck_Bunny.mp4"), 
	&genai.UploadFileConfig{
		MIMEType : "video/mp4",
	},
)
if err != nil {
	log.Fatal(err)
}

// Poll until the video file is completely processed (state becomes ACTIVE).
for file.State == genai.FileStateUnspecified || file.State != genai.FileStateActive {
	fmt.Println("Processing video...")
	fmt.Println("File state:", file.State)
	time.Sleep(5 * time.Second)

	file, err = client.Files.Get(ctx, file.Name, nil)
	if err != nil {
		log.Fatal(err)
	}
}

parts := []*genai.Part{
	genai.NewPartFromText("Describe this video clip"),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}

contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}

response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

پوسته

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D "${tmp_header_file}" \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

name=$(jq ".file.name" file_info.json)
echo name=$name

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Transcribe the audio from this video, giving timestamps for salient events in the video. Also provide visual descriptions."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

پی دی اف

پایتون

from google import genai

client = genai.Client()
sample_pdf = client.files.upload(file=media / "test.pdf")
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this document:", sample_pdf],
)
print(f"{response.text=}")

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "test.pdf"), 
	&genai.UploadFileConfig{
		MIMEType : "application/pdf",
	},
)
if err != nil {
	log.Fatal(err)
}

parts := []*genai.Part{
	genai.NewPartFromText("Give me a summary of this document:"),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}

contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}

response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

پوسته

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

چت

پایتون

from google import genai
from google.genai import types

client = genai.Client()
# Pass initial history using the "history" argument
chat = client.chats.create(
    model="gemini-2.0-flash",
    history=[
        types.Content(role="user", parts=[types.Part(text="Hello")]),
        types.Content(
            role="model",
            parts=[
                types.Part(
                    text="Great to meet you. What would you like to know?"
                )
            ],
        ),
    ],
)
response = chat.send_message(message="I have 2 dogs in my house.")
print(response.text)
response = chat.send_message(message="How many paws are in my house?")
print(response.text)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

const response1 = await chat.sendMessage({
  message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);

const response2 = await chat.sendMessage({
  message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

// Pass initial history using the History field.
history := []*genai.Content{
	genai.NewContentFromText("Hello", genai.RoleUser),
	genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
}

chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, history)
if err != nil {
	log.Fatal(err)
}

firstResp, err := chat.SendMessage(ctx, genai.Part{Text: "I have 2 dogs in my house."})
if err != nil {
	log.Fatal(err)
}
fmt.Println(firstResp.Text())

secondResp, err := chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if err != nil {
	log.Fatal(err)
}
fmt.Println(secondResp.Text())

پوسته

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

جاوا

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

حافظه پنهان

پایتون

from google import genai
from google.genai import types

client = genai.Client()
document = client.files.upload(file=media / "a11.txt")
model_name = "gemini-1.5-flash-001"

cache = client.caches.create(
    model=model_name,
    config=types.CreateCachedContentConfig(
        contents=[document],
        system_instruction="You are an expert analyzing transcripts.",
    ),
)
print(cache)

response = client.models.generate_content(
    model=model_name,
    contents="Please summarize this transcript",
    config=types.GenerateContentConfig(cached_content=cache.name),
)
print(response.text)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
  file: filePath,
  config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash-001";

const contents = [
  createUserContent(createPartFromUri(document.uri, document.mimeType)),
];

const cache = await ai.caches.create({
  model: modelName,
  config: {
    contents: contents,
    systemInstruction: "You are an expert analyzing transcripts.",
  },
});
console.log("Cache created:", cache);

const response = await ai.models.generateContent({
  model: modelName,
  contents: "Please summarize this transcript",
  config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"), 
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

modelName := "gemini-1.5-flash-001"
document, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "a11.txt"), 
	&genai.UploadFileConfig{
		MIMEType : "text/plain",
	},
)
if err != nil {
	log.Fatal(err)
}
parts := []*genai.Part{
	genai.NewPartFromURI(document.URI, document.MIMEType),
}
contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}
cache, err := client.Caches.Create(ctx, modelName, &genai.CreateCachedContentConfig{
	Contents: contents,
	SystemInstruction: genai.NewContentFromText(
		"You are an expert analyzing transcripts.", genai.RoleUser,
	),
})
if err != nil {
	log.Fatal(err)
}
fmt.Println("Cache created:")
fmt.Println(cache)

// Use the cache for generating content.
response, err := client.Models.GenerateContent(
	ctx,
	modelName,
	genai.Text("Please summarize this transcript"),
	&genai.GenerateContentConfig{
		CachedContent: cache.Name,
	},
)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

مدل تنظیم‌شده

پایتون

# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

حالت JSON

پایتون

from google import genai
from google.genai import types
from typing_extensions import TypedDict

class Recipe(TypedDict):
    recipe_name: str
    ingredients: list[str]

client = genai.Client()
result = client.models.generate_content(
    model="gemini-2.0-flash",
    contents="List a few popular cookie recipes.",
    config=types.GenerateContentConfig(
        response_mime_type="application/json", response_schema=list[Recipe]
    ),
)
print(result)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "List a few popular cookie recipes.",
  config: {
    responseMimeType: "application/json",
    responseSchema: {
      type: "array",
      items: {
        type: "object",
        properties: {
          recipeName: { type: "string" },
          ingredients: { type: "array", items: { type: "string" } },
        },
        required: ["recipeName", "ingredients"],
      },
    },
  },
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"), 
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

schema := &genai.Schema{
	Type: genai.TypeArray,
	Items: &genai.Schema{
		Type: genai.TypeObject,
		Properties: map[string]*genai.Schema{
			"recipe_name": {Type: genai.TypeString},
			"ingredients": {
				Type:  genai.TypeArray,
				Items: &genai.Schema{Type: genai.TypeString},
			},
		},
		Required: []string{"recipe_name"},
	},
}

config := &genai.GenerateContentConfig{
	ResponseMIMEType: "application/json",
	ResponseSchema:   schema,
}

response, err := client.Models.GenerateContent(
	ctx,
	"gemini-2.0-flash",
	genai.Text("List a few popular cookie recipes."),
	config,
)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

پوسته

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
      "parts":[
        {"text": "List 5 popular cookie recipes"}
        ]
    }],
    "generationConfig": {
        "response_mime_type": "application/json",
        "response_schema": {
          "type": "ARRAY",
          "items": {
            "type": "OBJECT",
            "properties": {
              "recipe_name": {"type":"STRING"},
            }
          }
        }
    }
}' 2> /dev/null | head

جاوا

Schema<List<String>> schema =
    new Schema(
        /* name */ "recipes",
        /* description */ "List of recipes",
        /* format */ null,
        /* nullable */ false,
        /* list */ null,
        /* properties */ null,
        /* required */ null,
        /* items */ new Schema(
            /* name */ "recipe",
            /* description */ "A recipe",
            /* format */ null,
            /* nullable */ false,
            /* list */ null,
            /* properties */ Map.of(
                "recipeName",
                new Schema(
                    /* name */ "recipeName",
                    /* description */ "Name of the recipe",
                    /* format */ null,
                    /* nullable */ false,
                    /* list */ null,
                    /* properties */ null,
                    /* required */ null,
                    /* items */ null,
                    /* type */ FunctionType.STRING)),
            /* required */ null,
            /* items */ null,
            /* type */ FunctionType.OBJECT),
        /* type */ FunctionType.ARRAY);

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.responseMimeType = "application/json";
configBuilder.responseSchema = schema;

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig */ generationConfig);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content = new Content.Builder().addText("List a few popular cookie recipes.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

اجرای کد

پایتون

from google import genai
from google.genai import types

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-pro-exp-02-05",
    contents=(
        "Write and execute code that calculates the sum of the first 50 prime numbers. "
        "Ensure that only the executable code and its resulting output are generated."
    ),
)
# Each part may contain text, executable code, or an execution result.
for part in response.candidates[0].content.parts:
    print(part, "\n")

print("-" * 80)
# The .text accessor concatenates the parts into a markdown-formatted text.
print("\n", response.text)

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

response, err := client.Models.GenerateContent(
	ctx,
	"gemini-2.0-pro-exp-02-05",
	genai.Text(
		`Write and execute code that calculates the sum of the first 50 prime numbers.
		 Ensure that only the executable code and its resulting output are generated.`,
	),
	&genai.GenerateContentConfig{},
)
if err != nil {
	log.Fatal(err)
}

// Print the response.
printResponse(response)

fmt.Println("--------------------------------------------------------------------------------")
fmt.Println(response.Text())

جاوا

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
        new GenerativeModel(
                /* modelName */ "gemini-1.5-pro",
                // Access your API key as a Build Configuration variable (see "Set up your API key"
                // above)
                /* apiKey */ BuildConfig.apiKey,
                /* generationConfig */ null,
                /* safetySettings */ null,
                /* requestOptions */ new RequestOptions(),
                /* tools */ Collections.singletonList(Tool.CODE_EXECUTION));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent =
        new Content.Builder().addText("What is the sum of the first 50 prime numbers?").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(inputContent);
Futures.addCallback(
        response,
        new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                // Each `part` either contains `text`, `executable_code` or an
                // `execution_result`
                Candidate candidate = result.getCandidates().get(0);
                for (Part part : candidate.getContent().getParts()) {
                    System.out.println(part);
                }

                // Alternatively, you can use the `text` accessor which joins the parts into a
                // markdown compatible text representation
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        },
        executor);

فراخوانی تابع

پایتون

from google import genai
from google.genai import types

client = genai.Client()

def add(a: float, b: float) -> float:
    """returns a + b."""
    return a + b

def subtract(a: float, b: float) -> float:
    """returns a - b."""
    return a - b

def multiply(a: float, b: float) -> float:
    """returns a * b."""
    return a * b

def divide(a: float, b: float) -> float:
    """returns a / b."""
    return a / b

# Create a chat session; function calling (via tools) is enabled in the config.
chat = client.chats.create(
    model="gemini-2.0-flash",
    config=types.GenerateContentConfig(tools=[add, subtract, multiply, divide]),
)
response = chat.send_message(
    message="I have 57 cats, each owns 44 mittens, how many mittens is that in total?"
)
print(response.text)

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}
modelName := "gemini-2.0-flash"

// Create the function declarations for arithmetic operations.
addDeclaration := createArithmeticToolDeclaration("addNumbers", "Return the result of adding two numbers.")
subtractDeclaration := createArithmeticToolDeclaration("subtractNumbers", "Return the result of subtracting the second number from the first.")
multiplyDeclaration := createArithmeticToolDeclaration("multiplyNumbers", "Return the product of two numbers.")
divideDeclaration := createArithmeticToolDeclaration("divideNumbers", "Return the quotient of dividing the first number by the second.")

// Group the function declarations as a tool.
tools := []*genai.Tool{
	{
		FunctionDeclarations: []*genai.FunctionDeclaration{
			addDeclaration,
			subtractDeclaration,
			multiplyDeclaration,
			divideDeclaration,
		},
	},
}

// Create the content prompt.
contents := []*genai.Content{
	genai.NewContentFromText(
		"I have 57 cats, each owns 44 mittens, how many mittens is that in total?", genai.RoleUser,
	),
}

// Set up the generate content configuration with function calling enabled.
config := &genai.GenerateContentConfig{
	Tools: tools,
	ToolConfig: &genai.ToolConfig{
		FunctionCallingConfig: &genai.FunctionCallingConfig{
			// The mode equivalent to FunctionCallingConfigMode.ANY in JS.
			Mode: genai.FunctionCallingConfigModeAny,
		},
	},
}

genContentResp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
if err != nil {
	log.Fatal(err)
}

// Assume the response includes a list of function calls.
if len(genContentResp.FunctionCalls()) == 0 {
	log.Println("No function call returned from the AI.")
	return nil
}
functionCall := genContentResp.FunctionCalls()[0]
log.Printf("Function call: %+v\n", functionCall)

// Marshal the Args map into JSON bytes.
argsMap, err := json.Marshal(functionCall.Args)
if err != nil {
	log.Fatal(err)
}

// Unmarshal the JSON bytes into the ArithmeticArgs struct.
var args ArithmeticArgs
if err := json.Unmarshal(argsMap, &args); err != nil {
	log.Fatal(err)
}

// Map the function name to the actual arithmetic function.
var result float64
switch functionCall.Name {
	case "addNumbers":
		result = add(args.FirstParam, args.SecondParam)
	case "subtractNumbers":
		result = subtract(args.FirstParam, args.SecondParam)
	case "multiplyNumbers":
		result = multiply(args.FirstParam, args.SecondParam)
	case "divideNumbers":
		result = divide(args.FirstParam, args.SecondParam)
	default:
		return fmt.Errorf("unimplemented function: %s", functionCall.Name)
}
log.Printf("Function result: %v\n", result)

// Prepare the final result message as content.
resultContents := []*genai.Content{
	genai.NewContentFromText("The final result is " + fmt.Sprintf("%v", result), genai.RoleUser),
}

// Use GenerateContent to send the final result.
finalResponse, err := client.Models.GenerateContent(ctx, modelName, resultContents, &genai.GenerateContentConfig{})
if err != nil {
	log.Fatal(err)
}

printResponse(finalResponse)

نود جی اس

  // Make sure to include the following import:
  // import {GoogleGenAI} from '@google/genai';
  const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

  /**
   * The add function returns the sum of two numbers.
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function add(a, b) {
    return a + b;
  }

  /**
   * The subtract function returns the difference (a - b).
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function subtract(a, b) {
    return a - b;
  }

  /**
   * The multiply function returns the product of two numbers.
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function multiply(a, b) {
    return a * b;
  }

  /**
   * The divide function returns the quotient of a divided by b.
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function divide(a, b) {
    return a / b;
  }

  const addDeclaration = {
    name: "addNumbers",
    parameters: {
      type: "object",
      description: "Return the result of adding two numbers.",
      properties: {
        firstParam: {
          type: "number",
          description:
            "The first parameter which can be an integer or a floating point number.",
        },
        secondParam: {
          type: "number",
          description:
            "The second parameter which can be an integer or a floating point number.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  const subtractDeclaration = {
    name: "subtractNumbers",
    parameters: {
      type: "object",
      description:
        "Return the result of subtracting the second number from the first.",
      properties: {
        firstParam: {
          type: "number",
          description: "The first parameter.",
        },
        secondParam: {
          type: "number",
          description: "The second parameter.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  const multiplyDeclaration = {
    name: "multiplyNumbers",
    parameters: {
      type: "object",
      description: "Return the product of two numbers.",
      properties: {
        firstParam: {
          type: "number",
          description: "The first parameter.",
        },
        secondParam: {
          type: "number",
          description: "The second parameter.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  const divideDeclaration = {
    name: "divideNumbers",
    parameters: {
      type: "object",
      description:
        "Return the quotient of dividing the first number by the second.",
      properties: {
        firstParam: {
          type: "number",
          description: "The first parameter.",
        },
        secondParam: {
          type: "number",
          description: "The second parameter.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  // Step 1: Call generateContent with function calling enabled.
  const generateContentResponse = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents:
      "I have 57 cats, each owns 44 mittens, how many mittens is that in total?",
    config: {
      toolConfig: {
        functionCallingConfig: {
          mode: FunctionCallingConfigMode.ANY,
        },
      },
      tools: [
        {
          functionDeclarations: [
            addDeclaration,
            subtractDeclaration,
            multiplyDeclaration,
            divideDeclaration,
          ],
        },
      ],
    },
  });

  // Step 2: Extract the function call.(
  // Assuming the response contains a 'functionCalls' array.
  const functionCall =
    generateContentResponse.functionCalls &&
    generateContentResponse.functionCalls[0];
  console.log(functionCall);

  // Parse the arguments.
  const args = functionCall.args;
  // Expected args format: { firstParam: number, secondParam: number }

  // Step 3: Invoke the actual function based on the function name.
  const functionMapping = {
    addNumbers: add,
    subtractNumbers: subtract,
    multiplyNumbers: multiply,
    divideNumbers: divide,
  };
  const func = functionMapping[functionCall.name];
  if (!func) {
    console.error("Unimplemented error:", functionCall.name);
    return generateContentResponse;
  }
  const resultValue = func(args.firstParam, args.secondParam);
  console.log("Function result:", resultValue);

  // Step 4: Use the chat API to send the result as the final answer.
  const chat = ai.chats.create({ model: "gemini-2.0-flash" });
  const chatResponse = await chat.sendMessage({
    message: "The final result is " + resultValue,
  });
  console.log(chatResponse.text);
  return chatResponse;
}

پوسته


cat > tools.json << EOF
{
  "function_declarations": [
    {
      "name": "enable_lights",
      "description": "Turn on the lighting system."
    },
    {
      "name": "set_light_color",
      "description": "Set the light color. Lights must be enabled for this to work.",
      "parameters": {
        "type": "object",
        "properties": {
          "rgb_hex": {
            "type": "string",
            "description": "The light color as a 6-digit hex string, e.g. ff0000 for red."
          }
        },
        "required": [
          "rgb_hex"
        ]
      }
    },
    {
      "name": "stop_lights",
      "description": "Turn off the lighting system."
    }
  ]
} 
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -d @<(echo '
  {
    "system_instruction": {
      "parts": {
        "text": "You are a helpful lighting system bot. You can turn lights on and off, and you can set the color. Do not perform any other tasks."
      }
    },
    "tools": ['$(cat tools.json)'],

    "tool_config": {
      "function_calling_config": {"mode": "auto"}
    },

    "contents": {
      "role": "user",
      "parts": {
        "text": "Turn on the lights please."
      }
    }
  }
') 2>/dev/null |sed -n '/"content"/,/"finishReason"/p'

جاوا

FunctionDeclaration multiplyDefinition =
    defineFunction(
        /* name  */ "multiply",
        /* description */ "returns a * b.",
        /* parameters */ Arrays.asList(
            Schema.numDouble("a", "First parameter"),
            Schema.numDouble("b", "Second parameter")),
        /* required */ Arrays.asList("a", "b"));

Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* functionDeclarations (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// Create prompt
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText(
    "I have 57 cats, each owns 44 mittens, how many mittens is that in total?");
Content userMessage = userContentBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Initialize the chat
ChatFutures chat = model.startChat();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        if (!result.getFunctionCalls().isEmpty()) {
          handleFunctionCall(result);
        }
        if (!result.getText().isEmpty()) {
          System.out.println(result.getText());
        }
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }

      private void handleFunctionCall(GenerateContentResponse result) {
        FunctionCallPart multiplyFunctionCallPart =
            result.getFunctionCalls().stream()
                .filter(fun -> fun.getName().equals("multiply"))
                .findFirst()
                .get();
        double a = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("a"));
        double b = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("b"));

        try {
          // `multiply(a, b)` is a regular java function defined in another class
          FunctionResponsePart functionResponsePart =
              new FunctionResponsePart(
                  "multiply", new JSONObject().put("result", multiply(a, b)));

          // Create prompt
          Content.Builder functionCallResponse = new Content.Builder();
          userContentBuilder.setRole("user");
          userContentBuilder.addPart(functionResponsePart);
          Content userMessage = userContentBuilder.build();

          chat.sendMessage(userMessage);
        } catch (JSONException e) {
          throw new RuntimeException(e);
        }
      }
    },
    executor);

پیکربندی نسل

پایتون

from google import genai
from google.genai import types

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents="Tell me a story about a magic backpack.",
    config=types.GenerateContentConfig(
        candidate_count=1,
        stop_sequences=["x"],
        max_output_tokens=20,
        temperature=1.0,
    ),
)
print(response.text)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story about a magic backpack.",
  config: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

// Create local variables for parameters.
candidateCount := int32(1)
maxOutputTokens := int32(20)
temperature := float32(1.0)

response, err := client.Models.GenerateContent(
	ctx,
	"gemini-2.0-flash",
	genai.Text("Tell me a story about a magic backpack."),
	&genai.GenerateContentConfig{
		CandidateCount:  candidateCount,
		StopSequences:   []string{"x"},
		MaxOutputTokens: maxOutputTokens,
		Temperature:     &temperature,
	},
)
if err != nil {
	log.Fatal(err)
}

printResponse(response)

پوسته

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
        "contents": [{
            "parts":[
                {"text": "Explain how AI works"}
            ]
        }],
        "generationConfig": {
            "stopSequences": [
                "Title"
            ],
            "temperature": 1.0,
            "maxOutputTokens": 800,
            "topP": 0.8,
            "topK": 10
        }
    }'  2> /dev/null | grep "text"

جاوا

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.temperature = 0.9f;
configBuilder.topK = 16;
configBuilder.topP = 0.1f;
configBuilder.maxOutputTokens = 200;
configBuilder.stopSequences = Arrays.asList("red");

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel("gemini-1.5-flash", BuildConfig.apiKey, generationConfig);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

تنظیمات ایمنی

پایتون

from google import genai
from google.genai import types

client = genai.Client()
unsafe_prompt = (
    "I support Martians Soccer Club and I think Jupiterians Football Club sucks! "
    "Write a ironic phrase about them including expletives."
)
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=unsafe_prompt,
    config=types.GenerateContentConfig(
        safety_settings=[
            types.SafetySetting(
                category="HARM_CATEGORY_HATE_SPEECH",
                threshold="BLOCK_MEDIUM_AND_ABOVE",
            ),
            types.SafetySetting(
                category="HARM_CATEGORY_HARASSMENT", threshold="BLOCK_ONLY_HIGH"
            ),
        ]
    ),
)
try:
    print(response.text)
except Exception:
    print("No information generated by the model.")

print(response.candidates[0].safety_ratings)

نود جی اس

  // Make sure to include the following import:
  // import {GoogleGenAI} from '@google/genai';
  const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
  const unsafePrompt =
    "I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them including expletives.";

  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: unsafePrompt,
    config: {
      safetySettings: [
        {
          category: "HARM_CATEGORY_HATE_SPEECH",
          threshold: "BLOCK_MEDIUM_AND_ABOVE",
        },
        {
          category: "HARM_CATEGORY_HARASSMENT",
          threshold: "BLOCK_ONLY_HIGH",
        },
      ],
    },
  });

  try {
    console.log("Generated text:", response.text);
  } catch (error) {
    console.log("No information generated by the model.");
  }
  console.log("Safety ratings:", response.candidates[0].safetyRatings);
  return response;
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

unsafePrompt := "I support Martians Soccer Club and I think Jupiterians Football Club sucks! " +
	"Write a ironic phrase about them including expletives."

config := &genai.GenerateContentConfig{
	SafetySettings: []*genai.SafetySetting{
		{
			Category:  "HARM_CATEGORY_HATE_SPEECH",
			Threshold: "BLOCK_MEDIUM_AND_ABOVE",
		},
		{
			Category:  "HARM_CATEGORY_HARASSMENT",
			Threshold: "BLOCK_ONLY_HIGH",
		},
	},
}
contents := []*genai.Content{
	genai.NewContentFromText(unsafePrompt, genai.RoleUser),
}
response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, config)
if err != nil {
	log.Fatal(err)
}

// Print the generated text.
text := response.Text()
fmt.Println("Generated text:", text)

// Print the and safety ratings from the first candidate.
if len(response.Candidates) > 0 {
	fmt.Println("Finish reason:", response.Candidates[0].FinishReason)
	safetyRatings, err := json.MarshalIndent(response.Candidates[0].SafetyRatings, "", "  ")
	if err != nil {
		return err
	}
	fmt.Println("Safety ratings:", string(safetyRatings))
} else {
	fmt.Println("No candidate returned.")
}

پوسته

echo '{
    "safetySettings": [
        {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"},
        {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
    ],
    "contents": [{
        "parts":[{
            "text": "'I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them.'"}]}]}' > request.json

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d @request.json 2> /dev/null

جاوا

SafetySetting harassmentSafety =
    new SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH);

SafetySetting hateSpeechSafety =
    new SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        "gemini-1.5-flash",
        BuildConfig.apiKey,
        null, // generation config is optional
        Arrays.asList(harassmentSafety, hateSpeechSafety));

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

دستورالعمل سیستم

پایتون

from google import genai
from google.genai import types

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents="Good morning! How are you?",
    config=types.GenerateContentConfig(
        system_instruction="You are a cat. Your name is Neko."
    ),
)
print(response.text)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Good morning! How are you?",
  config: {
    systemInstruction: "You are a cat. Your name is Neko.",
  },
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

// Construct the user message contents.
contents := []*genai.Content{
	genai.NewContentFromText("Good morning! How are you?", genai.RoleUser),
}

// Set the system instruction as a *genai.Content.
config := &genai.GenerateContentConfig{
	SystemInstruction: genai.NewContentFromText("You are a cat. Your name is Neko.", genai.RoleUser),
}

response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, config)
if err != nil {
	log.Fatal(err)
}
printResponse(response)

پوسته

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{ "system_instruction": {
    "parts":
      { "text": "You are a cat. Your name is Neko."}},
    "contents": {
      "parts": {
        "text": "Hello there"}}}'

جاوا

GenerativeModel model =
    new GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        /* modelName */ "gemini-1.5-flash",
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ null,
        /* toolsConfig (optional) */ null,
        /* systemInstruction (optional) */ new Content.Builder()
            .addText("You are a cat. Your name is Neko.")
            .build());

بدنه پاسخ

در صورت موفقیت، بدنه پاسخ شامل نمونه‌ای از GenerateContentResponse است.

متد: tunedModels.streamGenerateContent

با دریافت ورودی GenerateContentRequest یک پاسخ استریم‌شده از مدل تولید می‌کند.

نقطه پایانی

پست https: / /generativelanguage.googleapis.com /v1beta /{model=tunedModels /*}:streamGenerateContent

پارامترهای مسیر

string model

الزامی. نام Model که برای تولید تکمیل استفاده می‌شود.

قالب: models/{model} . این قالب به صورت tunedModels/{tunedmodel} است.

درخواست بدنه

بدنه درخواست شامل داده‌هایی با ساختار زیر است:

فیلدها
contents[] object ( Content )

الزامی. محتوای مکالمه فعلی با مدل.

برای پرس‌وجوهای تک نوبتی، این یک نمونه واحد است. برای پرس‌وجوهای چند نوبتی مانند چت ، این یک فیلد تکراری است که شامل سابقه مکالمه و آخرین درخواست است.

شیء tools[] object ( Tool )

اختیاری. فهرستی از Tools Model ممکن است برای تولید پاسخ بعدی استفاده کند.

یک Tool ، قطعه کدی است که سیستم را قادر می‌سازد تا با سیستم‌های خارجی تعامل داشته باشد تا یک یا مجموعه‌ای از اقدامات را خارج از دانش و محدوده Model انجام دهد. Tool پشتیبانی شده عبارتند از Function و codeExecution . برای کسب اطلاعات بیشتر به راهنماهای فراخوانی تابع (Function calling ) و اجرای کد (Code execution) مراجعه کنید.

شیء toolConfig object ( ToolConfig )

اختیاری. پیکربندی ابزار برای هر Tool که در درخواست مشخص شده است. برای مثال استفاده به راهنمای فراخوانی تابع مراجعه کنید.

شیء safetySettings[] object ( SafetySetting )

اختیاری. فهرستی از نمونه‌های منحصر به فرد SafetySetting برای مسدود کردن محتوای ناامن.

این مورد روی GenerateContentRequest.contents و GenerateContentResponse.candidates اعمال خواهد شد. برای هر نوع SafetyCategory نباید بیش از یک تنظیم وجود داشته باشد. API هر محتوا و پاسخی را که آستانه‌های تعیین‌شده توسط این تنظیمات را برآورده نکند، مسدود می‌کند. این لیست، تنظیمات پیش‌فرض برای هر SafetyCategory مشخص‌شده در safetySettings را لغو می‌کند. اگر هیچ SafetySetting برای یک SafetyCategory مشخص‌شده در لیست وجود نداشته باشد، API از تنظیم ایمنی پیش‌فرض برای آن دسته استفاده خواهد کرد. دسته‌های آسیب HARM_CATEGORY_HATE_SPEECH، HARM_CATEGORY_SEXUALLY_EXPLICIT، HARM_CATEGORY_DANGEROUS_CONTENT، HARM_CATEGORY_HARASSMENT، HARM_CATEGORY_CIVIC_INTEGRITY پشتیبانی می‌شوند. برای اطلاعات دقیق در مورد تنظیمات ایمنی موجود، به راهنما مراجعه کنید. همچنین برای یادگیری نحوه لحاظ کردن ملاحظات ایمنی در برنامه‌های هوش مصنوعی خود، به راهنمای ایمنی مراجعه کنید.

شیء systemInstruction object ( Content )

اختیاری. دستورالعمل(های) سیستم توسط توسعه‌دهنده تنظیم می‌شود. در حال حاضر، فقط متن.

شیء generationConfig object ( GenerationConfig )

اختیاری. گزینه‌های پیکربندی برای تولید مدل و خروجی‌ها.

string cachedContent

اختیاری. نام محتوای ذخیره شده برای استفاده به عنوان زمینه برای ارائه پیش‌بینی. قالب: cachedContents/{cachedContent}

درخواست نمونه

متن

پایتون

from google import genai

client = genai.Client()
response = client.models.generate_content_stream(
    model="gemini-2.0-flash", contents="Write a story about a magic backpack."
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}
contents := []*genai.Content{
	genai.NewContentFromText("Write a story about a magic backpack.", genai.RoleUser),
}
for response, err := range client.Models.GenerateContentStream(
	ctx,
	"gemini-2.0-flash",
	contents,
	nil,
) {
	if err != nil {
		log.Fatal(err)
	}
	fmt.Print(response.Candidates[0].Content.Parts[0].Text)
}

پوسته

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=${GEMINI_API_KEY}" \
        -H 'Content-Type: application/json' \
        --no-buffer \
        -d '{ "contents":[{"parts":[{"text": "Write a story about a magic backpack."}]}]}'

جاوا

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

تصویر

پایتون

from google import genai
import PIL.Image

client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
response = client.models.generate_content_stream(
    model="gemini-2.0-flash", contents=["Tell me about this instrument", organ]
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const organ = await ai.files.upload({
  file: path.join(media, "organ.jpg"),
});

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me about this instrument", 
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}
file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "organ.jpg"), 
	&genai.UploadFileConfig{
		MIMEType : "image/jpeg",
	},
)
if err != nil {
	log.Fatal(err)
}
parts := []*genai.Part{
	genai.NewPartFromText("Tell me about this instrument"),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}
for response, err := range client.Models.GenerateContentStream(
	ctx,
	"gemini-2.0-flash",
	contents,
	nil,
) {
	if err != nil {
		log.Fatal(err)
	}
	fmt.Print(response.Candidates[0].Content.Parts[0].Text)
}

پوسته

cat > "$TEMP_JSON" << EOF
{
  "contents": [{
    "parts":[
      {"text": "Tell me about this instrument"},
      {
        "inline_data": {
          "mime_type":"image/jpeg",
          "data": "$(cat "$TEMP_B64")"
        }
      }
    ]
  }]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d "@$TEMP_JSON" 2> /dev/null

جاوا

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image1)
        .addImage(image2)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

صوتی

پایتون

from google import genai

client = genai.Client()
sample_audio = client.files.upload(file=media / "sample.mp3")
response = client.models.generate_content_stream(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this audio file.", sample_audio],
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "sample.mp3"), 
	&genai.UploadFileConfig{
		MIMEType : "audio/mpeg",
	},
)
if err != nil {
	log.Fatal(err)
}

parts := []*genai.Part{
	genai.NewPartFromText("Give me a summary of this audio file."),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}

contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}

for result, err := range client.Models.GenerateContentStream(
	ctx,
	"gemini-2.0-flash",
	contents,
	nil,
) {
	if err != nil {
		log.Fatal(err)
	}
	fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}

پوسته

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

ویدئو

پایتون

from google import genai
import time

client = genai.Client()
# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = client.files.upload(file=media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Poll until the video file is completely processed (state becomes ACTIVE).
while not myfile.state or myfile.state.name != "ACTIVE":
    print("Processing video...")
    print("File state:", myfile.state)
    time.sleep(5)
    myfile = client.files.get(name=myfile.name)

response = client.models.generate_content_stream(
    model="gemini-2.0-flash", contents=[myfile, "Describe this video clip"]
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

let video = await ai.files.upload({
  file: path.join(media, 'Big_Buck_Bunny.mp4'),
});

// Poll until the video file is completely processed (state becomes ACTIVE).
while (!video.state || video.state.toString() !== 'ACTIVE') {
  console.log('Processing video...');
  console.log('File state: ', video.state);
  await sleep(5000);
  video = await ai.files.get({name: video.name});
}

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Describe this video clip",
      createPartFromUri(video.uri, video.mimeType),
    ]),
  ],
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "Big_Buck_Bunny.mp4"), 
	&genai.UploadFileConfig{
		MIMEType : "video/mp4",
	},
)
if err != nil {
	log.Fatal(err)
}

// Poll until the video file is completely processed (state becomes ACTIVE).
for file.State == genai.FileStateUnspecified || file.State != genai.FileStateActive {
	fmt.Println("Processing video...")
	fmt.Println("File state:", file.State)
	time.Sleep(5 * time.Second)

	file, err = client.Files.Get(ctx, file.Name, nil)
	if err != nil {
		log.Fatal(err)
	}
}

parts := []*genai.Part{
	genai.NewPartFromText("Describe this video clip"),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}

contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}

for result, err := range client.Models.GenerateContentStream(
	ctx,
	"gemini-2.0-flash",
	contents,
	nil,
) {
	if err != nil {
		log.Fatal(err)
	}
	fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}

پوسته

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

پی دی اف

پایتون

from google import genai

client = genai.Client()
sample_pdf = client.files.upload(file=media / "test.pdf")
response = client.models.generate_content_stream(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this document:", sample_pdf],
)

for chunk in response:
    print(chunk.text)
    print("_" * 80)

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

file, err := client.Files.UploadFromPath(
	ctx, 
	filepath.Join(getMedia(), "test.pdf"), 
	&genai.UploadFileConfig{
		MIMEType : "application/pdf",
	},
)
if err != nil {
	log.Fatal(err)
}

parts := []*genai.Part{
	genai.NewPartFromText("Give me a summary of this document:"),
	genai.NewPartFromURI(file.URI, file.MIMEType),
}

contents := []*genai.Content{
	genai.NewContentFromParts(parts, genai.RoleUser),
}

for result, err := range client.Models.GenerateContentStream(
	ctx,
	"gemini-2.0-flash",
	contents,
	nil,
) {
	if err != nil {
		log.Fatal(err)
	}
	fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}

پوسته

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

چت

پایتون

from google import genai
from google.genai import types

client = genai.Client()
chat = client.chats.create(
    model="gemini-2.0-flash",
    history=[
        types.Content(role="user", parts=[types.Part(text="Hello")]),
        types.Content(
            role="model",
            parts=[
                types.Part(
                    text="Great to meet you. What would you like to know?"
                )
            ],
        ),
    ],
)
response = chat.send_message_stream(message="I have 2 dogs in my house.")
for chunk in response:
    print(chunk.text)
    print("_" * 80)
response = chat.send_message_stream(message="How many paws are in my house?")
for chunk in response:
    print(chunk.text)
    print("_" * 80)

print(chat.get_history())

نود جی اس

// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

console.log("Streaming response for first message:");
const stream1 = await chat.sendMessageStream({
  message: "I have 2 dogs in my house.",
});
for await (const chunk of stream1) {
  console.log(chunk.text);
  console.log("_".repeat(80));
}

console.log("Streaming response for second message:");
const stream2 = await chat.sendMessageStream({
  message: "How many paws are in my house?",
});
for await (const chunk of stream2) {
  console.log(chunk.text);
  console.log("_".repeat(80));
}

console.log(chat.getHistory());

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
	APIKey:  os.Getenv("GEMINI_API_KEY"),
	Backend: genai.BackendGeminiAPI,
})
if err != nil {
	log.Fatal(err)
}

history := []*genai.Content{
	genai.NewContentFromText("Hello", genai.RoleUser),
	genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
}
chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, history)
if err != nil {
	log.Fatal(err)
}

for chunk, err := range chat.SendMessageStream(ctx, genai.Part{Text: "I have 2 dogs in my house."}) {
	if err != nil {
		log.Fatal(err)
	}
	fmt.Println(chunk.Text())
	fmt.Println(strings.Repeat("_", 64))
}

for chunk, err := range chat.SendMessageStream(ctx, genai.Part{Text: "How many paws are in my house?"}) {
	if err != nil {
		log.Fatal(err)
	}
	fmt.Println(chunk.Text())
	fmt.Println(strings.Repeat("_", 64))
}

fmt.Println(chat.History(false))

پوسته

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

جاوا

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// Use streaming with text-only input
Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(userMessage);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }

      @Override
      public void onError(Throwable t) {}

    });

بدنه پاسخ

در صورت موفقیت، بدنه پاسخ شامل جریانی از نمونه‌های GenerateContentResponse است.

روش: tunedModels.get

اطلاعات مربوط به یک TunedModel خاص را دریافت می‌کند.

نقطه پایانی

دریافت https: / /generativelanguage.googleapis.com /v1beta /{name=tunedModels /*}

پارامترهای مسیر

string name

الزامی. نام منبع مدل.

قالب: tunedModels/my-model-id به شکل tunedModels/{tunedmodel} است.

درخواست بدنه

بدنه درخواست باید خالی باشد.

درخواست نمونه

پایتون

# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

بدنه پاسخ

در صورت موفقیت، بدنه پاسخ شامل نمونه‌ای از TunedModel است.

روش: tunedModels.list

لیست‌ها مدل‌های تنظیم‌شده ایجاد کردند.

نقطه پایانی

دریافت https: / /generativelanguage.googleapis.com /v1beta /tunedModels

پارامترهای پرس و جو

integer pageSize

اختیاری. حداکثر تعداد TunedModels که باید برگردانده شوند (در هر صفحه). این سرویس ممکن است مدل های تنظیم شده کمتری را برگرداند.

اگر مشخص نشود، حداکثر ۱۰ مدل تنظیم‌شده برگردانده می‌شود. این متد حداکثر ۱۰۰۰ مدل در هر صفحه برمی‌گرداند، حتی اگر اندازه صفحه بزرگتری را ارسال کنید.

string pageToken

اختیاری. یک توکن صفحه، که از فراخوانی قبلی tunedModels.list دریافت شده است.

pageToken برگردانده شده توسط یک درخواست را به عنوان آرگومان برای درخواست بعدی جهت بازیابی صفحه بعدی ارائه دهید.

هنگام صفحه‌بندی، تمام پارامترهای دیگر ارائه شده به tunedModels.list باید با فراخوانی که توکن صفحه را ارائه داده است، مطابقت داشته باشند.

string filter

اختیاری. فیلتر، جستجوی متنی کاملی بر روی توضیحات و نام نمایش داده شده مدل تنظیم شده است. به طور پیش‌فرض، نتایج شامل مدل‌های تنظیم شده‌ای که با همه به اشتراک گذاشته شده‌اند، نخواهد بود.

عملگرهای اضافی: - مالک:من - نویسندگان:من - خوانندگان:من - خوانندگان:همه

مثال‌ها: "owner:me" تمام مدل‌های تنظیم‌شده‌ای را که فراخواننده به آنها نقش مالک را دارد، برمی‌گرداند. "readers:me" تمام مدل‌های تنظیم‌شده‌ای را که فراخواننده به آنها نقش خواننده را دارد، برمی‌گرداند. "readers:everyone" تمام مدل‌های تنظیم‌شده‌ای را که با همه به اشتراک گذاشته شده‌اند، برمی‌گرداند.

درخواست بدنه

بدنه درخواست باید خالی باشد.

درخواست نمونه

پایتون

# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

بدنه پاسخ

پاسخ از tunedModels.list که شامل فهرستی صفحه‌بندی‌شده از مدل‌ها است.

در صورت موفقیت، بدنه پاسخ شامل داده‌هایی با ساختار زیر است:

فیلدها
شیء tunedModels[] object ( TunedModel )

مدل‌های بازگردانده شده

string nextPageToken

یک توکن، که می‌تواند به عنوان pageToken برای بازیابی صفحه بعدی ارسال شود.

اگر این فیلد حذف شود، صفحات بیشتری وجود نخواهد داشت.

نمایش JSON
{
  "tunedModels": [
    {
      object (TunedModel)
    }
  ],
  "nextPageToken": string
}

روش: tunedModels.patch

یک مدل تیون شده را به‌روزرسانی می‌کند.

نقطه پایانی

وصله https: / /generativelanguage.googleapis.com /v1beta /{tunedModel.name=tunedModels /*}
PATCH https://generativelanguage.googleapis.com/v1beta/{tunedModel.name=tunedModels/*}

پارامترهای مسیر

string tunedModel.name

فقط خروجی. نام مدل تنظیم‌شده. یک نام منحصر به فرد در هنگام ایجاد ایجاد می‌شود. مثال: tunedModels/az2mb0bpw6i اگر displayName در هنگام ایجاد تنظیم شود، بخش id نام با اتصال کلمات displayName با خط فاصله و اضافه کردن یک بخش تصادفی برای منحصر به فرد بودن، تنظیم می‌شود.

مثال:

  • displayName = Sentence Translator
  • این تابع به شکل tunedModels/sentence-translator-u3b7m tunedModels/{tunedmodel} است.

پارامترهای پرس و جو

رشته updateMask string ( FieldMask format)

اختیاری. لیست فیلدهایی که باید به‌روزرسانی شوند.

این لیستی از نام‌های کامل فیلدها است که با کاما از هم جدا شده‌اند. مثال: "user.displayName,photo" .

درخواست بدنه

بدنه درخواست شامل یک نمونه از TunedModel است.

فیلدها
string displayName

اختیاری. نامی که برای این مدل در رابط‌های کاربری نمایش داده می‌شود. نام نمایشی باید حداکثر ۴۰ کاراکتر شامل فاصله‌ها باشد.

string description

اختیاری. شرح مختصری از این مدل.

شیء tuningTask object ( TuningTask )

الزامی. وظیفه تنظیم که مدل تنظیم‌شده را ایجاد می‌کند.

رشته readerProjectNumbers[] string ( int64 format)

اختیاری. فهرست شماره پروژه‌هایی که دسترسی خواندن به مدل تنظیم‌شده را دارند.

Union type source_model
مدلی که به عنوان نقطه شروع برای تنظیم استفاده می‌شود. source_model می‌تواند فقط یکی از موارد زیر باشد:
شیء tunedModelSource object ( TunedModelSource )

اختیاری. TunedModel برای استفاده به عنوان نقطه شروع آموزش مدل جدید.

number temperature

اختیاری. تصادفی بودن خروجی را کنترل می‌کند.

مقادیر می‌توانند شامل [0.0,1.0] باشند. مقداری نزدیک‌تر به 1.0 پاسخ‌هایی با تنوع بیشتر تولید می‌کند، در حالی که مقداری نزدیک‌تر به 0.0 معمولاً منجر به پاسخ‌های کمتر شگفت‌انگیز از مدل می‌شود.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

number topP

اختیاری. برای نمونه‌برداری هسته.

نمونه‌گیری هسته‌ای، کوچکترین مجموعه از توکن‌ها را در نظر می‌گیرد که مجموع احتمال آنها حداقل topP باشد.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

integer topK

اختیاری. برای نمونه‌برداری Top-k.

نمونه‌گیری Top-k، مجموعه‌ای از محتمل‌ترین توکن‌های topK را در نظر می‌گیرد. این مقدار، مقدار پیش‌فرضی را که باید توسط backend هنگام فراخوانی مدل استفاده شود، مشخص می‌کند.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

بدنه پاسخ

در صورت موفقیت، بدنه پاسخ شامل نمونه‌ای از TunedModel است.

متد: tunedModels.delete

یک مدل تنظیم‌شده را حذف می‌کند.

نقطه پایانی

حذف https: / /generativelanguage.googleapis.com /v1beta /{name=tunedModels /*}

پارامترهای مسیر

string name

الزامی. نام منبع مدل. قالب: tunedModels/my-model-id به شکل tunedModels/{tunedmodel} است.

درخواست بدنه

بدنه درخواست باید خالی باشد.

بدنه پاسخ

در صورت موفقیت، بدنه پاسخ یک شیء JSON خالی خواهد بود.

منبع REST: tunedModels

منبع: TunedModel

یک مدل تنظیم‌شده‌ی دقیق که با استفاده از ModelService.CreateTunedModel ایجاد شده است.

فیلدها
string name

فقط خروجی. نام مدل تنظیم‌شده. یک نام منحصر به فرد در هنگام ایجاد ایجاد می‌شود. مثال: tunedModels/az2mb0bpw6i اگر displayName در هنگام ایجاد تنظیم شود، بخش id نام با اتصال کلمات displayName با خط فاصله و اضافه کردن یک بخش تصادفی برای منحصر به فرد بودن، تنظیم می‌شود.

مثال:

  • displayName = Sentence Translator
  • نام = tunedModels/sentence-translator-u3b7m
string displayName

اختیاری. نامی که برای این مدل در رابط‌های کاربری نمایش داده می‌شود. نام نمایشی باید حداکثر ۴۰ کاراکتر شامل فاصله‌ها باشد.

string description

اختیاری. شرح مختصری از این مدل.

شمارشگر state enum ( State )

فقط خروجی. وضعیت مدل تنظیم‌شده.

رشته‌ی createTime string ( Timestamp format)

فقط خروجی. مهر زمانی که این مدل ایجاد شده است.

از RFC 3339 استفاده می‌کند، که در آن خروجی تولید شده همیشه به صورت Z-normalized خواهد بود و از ارقام کسری ۰، ۳، ۶ یا ۹ استفاده می‌کند. آفست‌های غیر از "Z" نیز پذیرفته می‌شوند. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

رشته updateTime string ( Timestamp format)

فقط خروجی. مهر زمانی که این مدل به‌روزرسانی شده است.

از RFC 3339 استفاده می‌کند، که در آن خروجی تولید شده همیشه به صورت Z-normalized خواهد بود و از ارقام کسری ۰، ۳، ۶ یا ۹ استفاده می‌کند. آفست‌های غیر از "Z" نیز پذیرفته می‌شوند. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

شیء tuningTask object ( TuningTask )

الزامی. وظیفه تنظیم که مدل تنظیم‌شده را ایجاد می‌کند.

رشته readerProjectNumbers[] string ( int64 format)

اختیاری. فهرست شماره پروژه‌هایی که دسترسی خواندن به مدل تنظیم‌شده را دارند.

Union type source_model
مدلی که به عنوان نقطه شروع برای تنظیم استفاده می‌شود. source_model می‌تواند فقط یکی از موارد زیر باشد:
شیء tunedModelSource object ( TunedModelSource )

اختیاری. TunedModel برای استفاده به عنوان نقطه شروع آموزش مدل جدید.

string baseModel

تغییرناپذیر. نام Model که قرار است تنظیم شود. مثال: models/gemini-1.5-flash-001

number temperature

اختیاری. تصادفی بودن خروجی را کنترل می‌کند.

مقادیر می‌توانند شامل [0.0,1.0] باشند. مقداری نزدیک‌تر به 1.0 پاسخ‌هایی با تنوع بیشتر تولید می‌کند، در حالی که مقداری نزدیک‌تر به 0.0 معمولاً منجر به پاسخ‌های کمتر شگفت‌انگیز از مدل می‌شود.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

number topP

اختیاری. برای نمونه‌برداری هسته.

نمونه‌گیری هسته‌ای، کوچکترین مجموعه از توکن‌ها را در نظر می‌گیرد که مجموع احتمال آنها حداقل topP باشد.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

integer topK

اختیاری. برای نمونه‌برداری Top-k.

نمونه‌گیری Top-k، مجموعه‌ای از محتمل‌ترین توکن‌های topK را در نظر می‌گیرد. این مقدار، مقدار پیش‌فرضی را که باید توسط backend هنگام فراخوانی مدل استفاده شود، مشخص می‌کند.

این مقدار، مقدار پیش‌فرضی را مشخص می‌کند که توسط مدل پایه هنگام ایجاد مدل استفاده می‌شود.

نمایش JSON
{
  "name": string,
  "displayName": string,
  "description": string,
  "state": enum (State),
  "createTime": string,
  "updateTime": string,
  "tuningTask": {
    object (TuningTask)
  },
  "readerProjectNumbers": [
    string
  ],

  // source_model
  "tunedModelSource": {
    object (TunedModelSource)
  },
  "baseModel": string
  // Union type
  "temperature": number,
  "topP": number,
  "topK": integer
}

منبع مدل تنظیم‌شده

مدل تنظیم‌شده به عنوان منبعی برای آموزش یک مدل جدید.

فیلدها
string tunedModel

تغییرناپذیر. نام TunedModel که به عنوان نقطه شروع آموزش مدل جدید استفاده می‌شود. مثال: tunedModels/my-tuned-model

string baseModel

فقط خروجی. نام Model پایه‌ای که این TunedModel از روی آن تنظیم شده است. مثال: models/gemini-1.5-flash-001

نمایش JSON
{
  "tunedModel": string,
  "baseModel": string
}

ایالت

وضعیت مدل تنظیم شده.

انوم‌ها
STATE_UNSPECIFIED مقدار پیش‌فرض. این مقدار استفاده نشده است.
CREATING مدل در حال ایجاد است.
ACTIVE مدل آماده استفاده است.
FAILED ایجاد مدل ناموفق بود.

تنظیم وظیفه

وظایف تنظیم که مدل‌های تنظیم‌شده را ایجاد می‌کنند.

فیلدها
رشته‌ی startTime string ( Timestamp format)

فقط خروجی. مهر زمانی هنگام شروع تنظیم این مدل.

از RFC 3339 استفاده می‌کند، که در آن خروجی تولید شده همیشه به صورت Z-normalized خواهد بود و از ارقام کسری ۰، ۳، ۶ یا ۹ استفاده می‌کند. آفست‌های غیر از "Z" نیز پذیرفته می‌شوند. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

رشته‌ی completeTime string ( Timestamp format)

فقط خروجی. مهر زمانی هنگام تکمیل تنظیم این مدل.

از RFC 3339 استفاده می‌کند، که در آن خروجی تولید شده همیشه به صورت Z-normalized خواهد بود و از ارقام کسری ۰، ۳، ۶ یا ۹ استفاده می‌کند. آفست‌های غیر از "Z" نیز پذیرفته می‌شوند. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

شیء snapshots[] object ( TuningSnapshot )

فقط خروجی. معیارهای جمع‌آوری‌شده در طول تنظیم.

شیء trainingData object ( Dataset )

الزامی. فقط ورودی. تغییرناپذیر. داده‌های آموزشی مدل.

شیء hyperparameters object ( Hyperparameters )

تغییرناپذیر. ابرپارامترهایی که فرآیند تنظیم را کنترل می‌کنند. در صورت عدم ارائه، از مقادیر پیش‌فرض استفاده خواهد شد.

نمایش JSON
{
  "startTime": string,
  "completeTime": string,
  "snapshots": [
    {
      object (TuningSnapshot)
    }
  ],
  "trainingData": {
    object (Dataset)
  },
  "hyperparameters": {
    object (Hyperparameters)
  }
}

تنظیم عکس فوری

برای یک گام تنظیم، ضبط کنید.

فیلدها
integer step

فقط خروجی. مرحله تنظیم.

integer epoch

فقط خروجی. دوره‌ای که این مرحله بخشی از آن بود.

meanLoss number تلفات

فقط خروجی. میانگین تلفات نمونه‌های آموزشی برای این مرحله.

رشته‌ی computeTime string ( Timestamp format)

فقط خروجی. مهر زمانی که این معیار محاسبه شده است.

از RFC 3339 استفاده می‌کند، که در آن خروجی تولید شده همیشه به صورت Z-normalized خواهد بود و از ارقام کسری ۰، ۳، ۶ یا ۹ استفاده می‌کند. آفست‌های غیر از "Z" نیز پذیرفته می‌شوند. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

نمایش JSON
{
  "step": integer,
  "epoch": integer,
  "meanLoss": number,
  "computeTime": string
}

مجموعه داده‌ها

مجموعه داده برای آموزش یا اعتبارسنجی.

فیلدها
dataset Union type
داده‌های درون‌خطی یا ارجاع به dataset داده‌ها می‌تواند فقط یکی از موارد زیر باشد:
شیء examples object ( TuningExamples )

اختیاری. مثال‌های درون‌خطی با متن ورودی/خروجی ساده.

نمایش JSON
{

  // dataset
  "examples": {
    object (TuningExamples)
  }
  // Union type
}

نمونه‌های تنظیم

مجموعه‌ای از مثال‌های تنظیم. می‌تواند داده‌های آموزشی یا اعتبارسنجی باشد.

فیلدها
شیء examples[] object ( TuningExample )

مثال‌ها. ورودی مثال می‌تواند برای متن یا بحث باشد، اما همه مثال‌های یک مجموعه باید از یک نوع باشند.

نمایش JSON
{
  "examples": [
    {
      object (TuningExample)
    }
  ]
}

مثال تنظیم

یک مثال برای تنظیم.

فیلدها
string output

خروجی مدل مورد انتظار.

Union type model_input
ورودی مدل برای این مثال. model_input می‌تواند فقط یکی از موارد زیر باشد:
string textInput

اختیاری. ورودی مدل متنی.

نمایش JSON
{
  "output": string,

  // model_input
  "textInput": string
  // Union type
}

هایپرپارامترها

ابرپارامترهایی که فرآیند تنظیم را کنترل می‌کنند. برای اطلاعات بیشتر به https://ai.google.dev/docs/model_tuning_guidance مراجعه کنید.

فیلدها
learning_rate_option Union type
گزینه‌هایی برای تعیین نرخ یادگیری در طول تنظیم. learning_rate_option فقط می‌تواند یکی از موارد زیر باشد:
number learningRate

اختیاری. تغییرناپذیر. هایپرپارامتر نرخ یادگیری برای تنظیم. اگر تنظیم نشود، مقدار پیش‌فرض ۰.۰۰۱ یا ۰.۰۰۰۲ بر اساس تعداد مثال‌های آموزشی محاسبه خواهد شد.

number learningRateMultiplier

اختیاری. تغییرناپذیر. ضریب نرخ یادگیری برای محاسبه نرخ یادگیری نهایی بر اساس مقدار پیش‌فرض (توصیه‌شده) استفاده می‌شود. نرخ یادگیری واقعی: = learningRateMultiplier * نرخ یادگیری پیش‌فرض نرخ یادگیری پیش‌فرض به مدل پایه و اندازه مجموعه داده بستگی دارد. در صورت عدم تنظیم، مقدار پیش‌فرض ۱.۰ استفاده خواهد شد.

integer epochCount

تغییرناپذیر. تعداد دوره‌های آموزشی. یک دوره، یک بار عبور از داده‌های آموزشی است. اگر تنظیم نشود، مقدار پیش‌فرض ۵ در نظر گرفته می‌شود.

integer batchSize

تغییرناپذیر. هایپرپارامتر اندازه دسته برای تنظیم. اگر تنظیم نشود، مقدار پیش‌فرض ۴ یا ۱۶ بر اساس تعداد مثال‌های آموزشی استفاده خواهد شد.

نمایش JSON
{

  // learning_rate_option
  "learningRate": number,
  "learningRateMultiplier": number
  // Union type
  "epochCount": integer,
  "batchSize": integer
}