Tuning

پشتیبانی تنظیم دقیق Gemini API مکانیزمی را برای تنظیم خروجی زمانی که مجموعه داده کوچکی از نمونه های ورودی/خروجی دارید، فراهم می کند. برای جزئیات بیشتر، راهنمای تنظیم و آموزش مدل را بررسی کنید.

روش: tunedModels.create

یک مدل تنظیم شده ایجاد می کند. پیشرفت تنظیم متوسط ​​(در صورت وجود) را از طریق سرویس google.longrunning.Operations بررسی کنید.

از طریق سرویس عملیات به وضعیت و نتایج دسترسی پیدا کنید. مثال: GET /v1/tunedModels/az2mb0bpw6i/operations/000-111-222

نقطه پایانی

پست https: / /generativelanguage.googleapis.com /v1beta /tunedModels

پارامترهای پرس و جو

string tunedModelId

اختیاری. شناسه منحصر به فرد برای مدل تنظیم شده در صورت مشخص شدن. این مقدار باید حداکثر 40 کاراکتر باشد، اولین کاراکتر باید یک حرف باشد، آخرین کاراکتر می تواند یک حرف یا یک عدد باشد. شناسه باید با عبارت منظم مطابقت داشته باشد: [az]([a-z0-9-]{0,38}[a-z0-9])? .

درخواست بدن

بدنه درخواست شامل یک نمونه از TunedModel است.

فیلدها
string displayName

اختیاری. نامی که برای این مدل در رابط های کاربری نمایش داده می شود. نام نمایشی باید حداکثر 40 کاراکتر شامل فاصله باشد.

string description

اختیاری. توضیح کوتاهی در مورد این مدل

شیء tuningTask object ( TuningTask )

مورد نیاز. وظیفه تنظیم که مدل کوک شده را ایجاد می کند.

رشته readerProjectNumbers[] string ( int64 format)

اختیاری. لیست شماره پروژه هایی که به مدل تنظیم شده دسترسی خواندن دارند.

source_model Union type
مدلی که به عنوان نقطه شروع برای تنظیم استفاده می شود. source_model تنها می تواند یکی از موارد زیر باشد:
شیء tunedModelSource object ( TunedModelSource )

اختیاری. از TunedModel به عنوان نقطه شروع برای آموزش مدل جدید استفاده کنید.

string baseModel

تغییرناپذیر. نام Model برای کوک کردن. مثال: models/gemini-1.5-flash-001

number temperature

اختیاری. تصادفی بودن خروجی را کنترل می کند.

مقادیر می توانند بیش از [0.0,1.0] ، شامل محدوده باشند. یک مقدار نزدیک به 1.0 پاسخ هایی را ایجاد می کند که متنوع تر هستند، در حالی که مقدار نزدیک به 0.0 معمولاً منجر به پاسخ های شگفت انگیز کمتری از مدل می شود.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

number topP

اختیاری. برای نمونه برداری هسته

نمونه برداری هسته کوچکترین مجموعه ای از نشانه ها را در نظر می گیرد که مجموع احتمال آنها حداقل topP باشد.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

topK integer

اختیاری. برای نمونه گیری Top-k.

نمونه گیری Top-k مجموعه ای از محتمل ترین توکن های topK را در نظر می گیرد. این مقدار پیش‌فرض را مشخص می‌کند که در هنگام برقراری تماس با مدل توسط backend استفاده شود.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

درخواست نمونه

پایتون
# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

بدن پاسخگو

در صورت موفقیت آمیز بودن، بدنه پاسخ حاوی نمونه جدیدی از Operation است.

روش: tunedModels.generateContent

یک پاسخ مدل با یک ورودی GenerateContentRequest ایجاد می کند. برای اطلاعات دقیق استفاده به راهنمای تولید متن مراجعه کنید. قابلیت های ورودی بین مدل ها از جمله مدل های تنظیم شده متفاوت است. برای جزئیات به راهنمای مدل و راهنمای تنظیم مراجعه کنید.

نقطه پایانی

پست https: / /generativelanguage.googleapis.com /v1beta /{model=tunedModels /*}:generateContent

پارامترهای مسیر

string model

مورد نیاز. نام Model که برای ایجاد تکمیل استفاده می شود.

قالب: models/{model} . به شکل tunedModels/{tunedmodel} است.

درخواست بدن

بدنه درخواست حاوی داده هایی با ساختار زیر است:

فیلدها
contents[] object ( Content )

مورد نیاز. محتوای گفتگوی فعلی با مدل.

برای پرس و جوهای تک نوبتی، این یک نمونه است. برای جستجوهای چند نوبتی مانند چت ، این یک فیلد تکراری است که حاوی تاریخچه مکالمه و آخرین درخواست است.

tools[] object ( Tool )

اختیاری. فهرستی از Tools Model ممکن است برای ایجاد پاسخ بعدی استفاده کند.

Tool قطعه ای از کد است که سیستم را قادر می سازد تا با سیستم های خارجی برای انجام یک عمل یا مجموعه ای از اقدامات خارج از دانش و محدوده Model تعامل داشته باشد. Tool پشتیبانی شده Function و codeExecution هستند. برای کسب اطلاعات بیشتر به فراخوانی تابع و راهنمای اجرای کد مراجعه کنید.

شی toolConfig object ( ToolConfig )

اختیاری. پیکربندی ابزار برای هر Tool در درخواست مشخص شده است. برای مثال استفاده به راهنمای فراخوانی تابع مراجعه کنید.

شیء safetySettings[] object ( SafetySetting )

اختیاری. فهرستی از نمونه‌های SafetySetting منحصر به فرد برای مسدود کردن محتوای ناامن.

این در GenerateContentRequest.contents و GenerateContentResponse.candidates اعمال خواهد شد. برای هر نوع SafetyCategory نباید بیش از یک تنظیم وجود داشته باشد. API هر محتوا و پاسخی را که نتواند آستانه تعیین شده توسط این تنظیمات را برآورده کند مسدود می کند. این فهرست تنظیمات پیش‌فرض را برای هر SafetyCategory مشخص‌شده در تنظیمات ایمنی لغو می‌کند. اگر هیچ SafetySetting برای یک SafetyCategory معین در لیست ارائه نشده باشد، API از تنظیمات ایمنی پیش‌فرض برای آن دسته استفاده می‌کند. دسته‌های آسیب HARM_CATEGORY_HATE_SPEECH، HARM_CATEGORY_SEXUALLY_EXPLICIT، HARM_CATEGORY_DANGEROUS_CONTENT، HARM_CATEGORY_HARASSMENT، HARM_CATEGORY_CIVIC_INTEGRITY پشتیبانی می‌شوند. برای اطلاعات دقیق در مورد تنظیمات ایمنی موجود به راهنما مراجعه کنید. همچنین به راهنمای ایمنی مراجعه کنید تا یاد بگیرید چگونه ملاحظات ایمنی را در برنامه های هوش مصنوعی خود لحاظ کنید.

شی systemInstruction object ( Content )

اختیاری. دستورالعمل(های) سیستم مجموعه توسعه دهنده. در حال حاضر فقط متن است.

شی generationConfig object ( GenerationConfig )

اختیاری. گزینه های پیکربندی برای تولید مدل و خروجی ها.

cachedContent string

اختیاری. نام محتوای ذخیره شده در حافظه پنهان برای استفاده به عنوان زمینه برای ارائه پیش بینی. قالب: cachedContents/{cachedContent}

درخواست نمونه

from google import genai

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-flash", contents="Write a story about a magic backpack."
)
print(response.text)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
console.log(response.text);
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Write a story about a magic backpack."))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{"text": "Write a story about a magic backpack."}]
        }]
       }' 2> /dev/null
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
val response = generativeModel.generateContent(prompt)
print(response.text)
let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);
from google import genai
import PIL.Image

client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
response = client.models.generate_content(
    model="gemini-2.0-flash", contents=["Tell me about this instrument", organ]
)
print(response.text)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const organ = await ai.files.upload({
  file: path.join(media, "organ.jpg"),
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me about this instrument", 
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
console.log(response.text);
model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)
# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"

# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT

cat > "$TEMP_JSON" << EOF
{
  "contents": [{
    "parts":[
      {"text": "Tell me about this instrument"},
      {
        "inline_data": {
          "mime_type":"image/jpeg",
          "data": "$(cat "$TEMP_B64")"
        }
      }
    ]
  }]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d "@$TEMP_JSON" 2> /dev/null
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

val response = generativeModel.generateContent(inputContent)
print(response.text)
let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

let response = try await generativeModel.generateContent(image, prompt)
if let text = response.text {
  print(text)
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final response = await model.generateContent([
  Content.multi([TextPart(prompt), image])
]);
print(response.text);
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image = BitmapFactory.decodeResource(context.getResources(), R.drawable.image);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);
from google import genai

client = genai.Client()
sample_audio = client.files.upload(file=media / "sample.mp3")
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this audio file.", sample_audio],
)
print(response.text)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const audio = await ai.files.upload({
  file: path.join(media, "sample.mp3"),
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Give me a summary of this audio file.",
      createPartFromUri(audio.uri, audio.mimeType),
    ]),
  ],
});
console.log(response.text);
# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json
from google import genai
import time

client = genai.Client()
# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = client.files.upload(file=media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    myfile = client.files.get(name=myfile.name)

response = client.models.generate_content(
    model="gemini-2.0-flash", contents=[myfile, "Describe this video clip"]
)
print(f"{response.text=}")
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

let video = await ai.files.upload({
  file: path.join(media, 'Big_Buck_Bunny.mp4'),
});

// Poll until the video file is completely processed (state becomes ACTIVE).
while (!video.state || video.state.toString() !== 'ACTIVE') {
  console.log('Processing video...');
  console.log('File state: ', video.state);
  await sleep(5000);
  video = await ai.files.get({name: video.name});
}

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Describe this video clip",
      createPartFromUri(video.uri, video.mimeType),
    ]),
  ],
});
console.log(response.text);
model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

// Videos need to be processed before you can use them.
for file.State == genai.FileStateProcessing {
	log.Printf("processing %s", file.Name)
	time.Sleep(5 * time.Second)
	var err error
	if file, err = client.GetFile(ctx, file.Name); err != nil {
		log.Fatal(err)
	}
}
if file.State != genai.FileStateActive {
	log.Fatalf("uploaded file has state %s, not active", file.State)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
if err != nil {
	log.Fatal(err)
}

printResponse(resp)
# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D "${tmp_header_file}" \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

name=$(jq ".file.name" file_info.json)
echo name=$name

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Transcribe the audio from this video, giving timestamps for salient events in the video. Also provide visual descriptions."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json
from google import genai

client = genai.Client()
sample_pdf = client.files.upload(file=media / "test.pdf")
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this document:", sample_pdf],
)
print(f"{response.text=}")
MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json
from google import genai
from google.genai import types

client = genai.Client()
# Pass initial history using the "history" argument
chat = client.chats.create(
    model="gemini-2.0-flash",
    history=[
        types.Content(role="user", parts=[types.Part(text="Hello")]),
        types.Content(
            role="model",
            parts=[
                types.Part(
                    text="Great to meet you. What would you like to know?"
                )
            ],
        ),
    ],
)
response = chat.send_message(message="I have 2 dogs in my house.")
print(response.text)
response = chat.send_message(message="How many paws are in my house?")
print(response.text)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

const response1 = await chat.sendMessage({
  message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);

const response2 = await chat.sendMessage({
  message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
	log.Fatal(err)
}
printResponse(res)
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)
let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
if let text = response.text {
  print(text)
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var response =
    await chat.sendMessage(Content.text('I have 2 dogs in my house.'));
print(response.text);
response =
    await chat.sendMessage(Content.text('How many paws are in my house?'));
print(response.text);
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);
from google import genai
from google.genai import types

client = genai.Client()
document = client.files.upload(file=media / "a11.txt")
model_name = "gemini-1.5-flash-001"

cache = client.caches.create(
    model=model_name,
    config=types.CreateCachedContentConfig(
        contents=[document],
        system_instruction="You are an expert analyzing transcripts.",
    ),
)
print(cache)

response = client.models.generate_content(
    model=model_name,
    contents="Please summarize this transcript",
    config=types.GenerateContentConfig(cached_content=cache.name),
)
print(response.text)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
  file: filePath,
  config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash-001";

const contents = [
  createUserContent(createPartFromUri(document.uri, document.mimeType)),
];

const cache = await ai.caches.create({
  model: modelName,
  config: {
    contents: contents,
    systemInstruction: "You are an expert analyzing transcripts.",
  },
});
console.log("Cache created:", cache);

const response = await ai.models.generateContent({
  model: modelName,
  contents: "Please summarize this transcript",
  config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);
پایتون
# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate
from google import genai
from google.genai import types
from typing_extensions import TypedDict

class Recipe(TypedDict):
    recipe_name: str
    ingredients: list[str]

client = genai.Client()
result = client.models.generate_content(
    model="gemini-2.0-flash",
    contents="List a few popular cookie recipes.",
    config=types.GenerateContentConfig(
        response_mime_type="application/json", response_schema=list[Recipe]
    ),
)
print(result)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "List a few popular cookie recipes.",
  config: {
    responseMimeType: "application/json",
    responseSchema: {
      type: "array",
      items: {
        type: "object",
        properties: {
          recipeName: { type: "string" },
          ingredients: { type: "array", items: { type: "string" } },
        },
        required: ["recipeName", "ingredients"],
      },
    },
  },
});
console.log(response.text);
model := client.GenerativeModel("gemini-1.5-pro-latest")
// Ask the model to respond with JSON.
model.ResponseMIMEType = "application/json"
// Specify the schema.
model.ResponseSchema = &genai.Schema{
	Type:  genai.TypeArray,
	Items: &genai.Schema{Type: genai.TypeString},
}
resp, err := model.GenerateContent(ctx, genai.Text("List a few popular cookie recipes using this JSON schema."))
if err != nil {
	log.Fatal(err)
}
for _, part := range resp.Candidates[0].Content.Parts {
	if txt, ok := part.(genai.Text); ok {
		var recipes []string
		if err := json.Unmarshal([]byte(txt), &recipes); err != nil {
			log.Fatal(err)
		}
		fmt.Println(recipes)
	}
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
      "parts":[
        {"text": "List 5 popular cookie recipes"}
        ]
    }],
    "generationConfig": {
        "response_mime_type": "application/json",
        "response_schema": {
          "type": "ARRAY",
          "items": {
            "type": "OBJECT",
            "properties": {
              "recipe_name": {"type":"STRING"},
            }
          }
        }
    }
}' 2> /dev/null | head
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        generationConfig = generationConfig {
            responseMimeType = "application/json"
            responseSchema = Schema(
                name = "recipes",
                description = "List of recipes",
                type = FunctionType.ARRAY,
                items = Schema(
                    name = "recipe",
                    description = "A recipe",
                    type = FunctionType.OBJECT,
                    properties = mapOf(
                        "recipeName" to Schema(
                            name = "recipeName",
                            description = "Name of the recipe",
                            type = FunctionType.STRING,
                            nullable = false
                        ),
                    ),
                    required = listOf("recipeName")
                ),
            )
        })

val prompt = "List a few popular cookie recipes."
val response = generativeModel.generateContent(prompt)
print(response.text)
let jsonSchema = Schema(
  type: .array,
  description: "List of recipes",
  items: Schema(
    type: .object,
    properties: [
      "recipeName": Schema(type: .string, description: "Name of the recipe", nullable: false),
    ],
    requiredProperties: ["recipeName"]
  )
)

let generativeModel = GenerativeModel(
  // Specify a model that supports controlled generation like Gemini 1.5 Pro
  name: "gemini-1.5-pro",
  // Access your API key from your on-demand resource .plist file (see "Set up your API key"
  // above)
  apiKey: APIKey.default,
  generationConfig: GenerationConfig(
    responseMIMEType: "application/json",
    responseSchema: jsonSchema
  )
)

let prompt = "List a few popular cookie recipes."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final schema = Schema.array(
    description: 'List of recipes',
    items: Schema.object(properties: {
      'recipeName':
          Schema.string(description: 'Name of the recipe.', nullable: false)
    }, requiredProperties: [
      'recipeName'
    ]));

final model = GenerativeModel(
    model: 'gemini-1.5-pro',
    apiKey: apiKey,
    generationConfig: GenerationConfig(
        responseMimeType: 'application/json', responseSchema: schema));

final prompt = 'List a few popular cookie recipes.';
final response = await model.generateContent([Content.text(prompt)]);
print(response.text);
Schema<List<String>> schema =
    new Schema(
        /* name */ "recipes",
        /* description */ "List of recipes",
        /* format */ null,
        /* nullable */ false,
        /* list */ null,
        /* properties */ null,
        /* required */ null,
        /* items */ new Schema(
            /* name */ "recipe",
            /* description */ "A recipe",
            /* format */ null,
            /* nullable */ false,
            /* list */ null,
            /* properties */ Map.of(
                "recipeName",
                new Schema(
                    /* name */ "recipeName",
                    /* description */ "Name of the recipe",
                    /* format */ null,
                    /* nullable */ false,
                    /* list */ null,
                    /* properties */ null,
                    /* required */ null,
                    /* items */ null,
                    /* type */ FunctionType.STRING)),
            /* required */ null,
            /* items */ null,
            /* type */ FunctionType.OBJECT),
        /* type */ FunctionType.ARRAY);

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.responseMimeType = "application/json";
configBuilder.responseSchema = schema;

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig */ generationConfig);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content = new Content.Builder().addText("List a few popular cookie recipes.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);
from google import genai
from google.genai import types

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-pro-exp-02-05",
    contents=(
        "Write and execute code that calculates the sum of the first 50 prime numbers. "
        "Ensure that only the executable code and its resulting output are generated."
    ),
)
# Each part may contain text, executable code, or an execution result.
for part in response.candidates[0].content.parts:
    print(part, "\n")

print("-" * 80)
# The .text accessor concatenates the parts into a markdown-formatted text.
print("\n", response.text)

val model = GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    modelName = "gemini-1.5-pro",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey,
    tools = listOf(Tool.CODE_EXECUTION)
)

val response = model.generateContent("What is the sum of the first 50 prime numbers?")

// Each `part` either contains `text`, `executable_code` or an `execution_result`
println(response.candidates[0].content.parts.joinToString("\n"))

// Alternatively, you can use the `text` accessor which joins the parts into a markdown compatible
// text representation
println(response.text)
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
        new GenerativeModel(
                /* modelName */ "gemini-1.5-pro",
                // Access your API key as a Build Configuration variable (see "Set up your API key"
                // above)
                /* apiKey */ BuildConfig.apiKey,
                /* generationConfig */ null,
                /* safetySettings */ null,
                /* requestOptions */ new RequestOptions(),
                /* tools */ Collections.singletonList(Tool.CODE_EXECUTION));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent =
        new Content.Builder().addText("What is the sum of the first 50 prime numbers?").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(inputContent);
Futures.addCallback(
        response,
        new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                // Each `part` either contains `text`, `executable_code` or an
                // `execution_result`
                Candidate candidate = result.getCandidates().get(0);
                for (Part part : candidate.getContent().getParts()) {
                    System.out.println(part);
                }

                // Alternatively, you can use the `text` accessor which joins the parts into a
                // markdown compatible text representation
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        },
        executor);
from google import genai
from google.genai import types

client = genai.Client()

def add(a: float, b: float) -> float:
    """returns a + b."""
    return a + b

def subtract(a: float, b: float) -> float:
    """returns a - b."""
    return a - b

def multiply(a: float, b: float) -> float:
    """returns a * b."""
    return a * b

def divide(a: float, b: float) -> float:
    """returns a / b."""
    return a / b

# Create a chat session; function calling (via tools) is enabled in the config.
chat = client.chats.create(
    model="gemini-2.0-flash",
    config=types.GenerateContentConfig(tools=[add, subtract, multiply, divide]),
)
response = chat.send_message(
    message="I have 57 cats, each owns 44 mittens, how many mittens is that in total?"
)
print(response.text)
  // Make sure to include the following import:
  // import {GoogleGenAI} from '@google/genai';
  const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

  /**
   * The add function returns the sum of two numbers.
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function add(a, b) {
    return a + b;
  }

  /**
   * The subtract function returns the difference (a - b).
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function subtract(a, b) {
    return a - b;
  }

  /**
   * The multiply function returns the product of two numbers.
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function multiply(a, b) {
    return a * b;
  }

  /**
   * The divide function returns the quotient of a divided by b.
   * @param {number} a
   * @param {number} b
   * @returns {number}
   */
  function divide(a, b) {
    return a / b;
  }

  const addDeclaration = {
    name: "addNumbers",
    parameters: {
      type: "object",
      description: "Return the result of adding two numbers.",
      properties: {
        firstParam: {
          type: "number",
          description:
            "The first parameter which can be an integer or a floating point number.",
        },
        secondParam: {
          type: "number",
          description:
            "The second parameter which can be an integer or a floating point number.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  const subtractDeclaration = {
    name: "subtractNumbers",
    parameters: {
      type: "object",
      description:
        "Return the result of subtracting the second number from the first.",
      properties: {
        firstParam: {
          type: "number",
          description: "The first parameter.",
        },
        secondParam: {
          type: "number",
          description: "The second parameter.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  const multiplyDeclaration = {
    name: "multiplyNumbers",
    parameters: {
      type: "object",
      description: "Return the product of two numbers.",
      properties: {
        firstParam: {
          type: "number",
          description: "The first parameter.",
        },
        secondParam: {
          type: "number",
          description: "The second parameter.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  const divideDeclaration = {
    name: "divideNumbers",
    parameters: {
      type: "object",
      description:
        "Return the quotient of dividing the first number by the second.",
      properties: {
        firstParam: {
          type: "number",
          description: "The first parameter.",
        },
        secondParam: {
          type: "number",
          description: "The second parameter.",
        },
      },
      required: ["firstParam", "secondParam"],
    },
  };

  // Step 1: Call generateContent with function calling enabled.
  const generateContentResponse = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents:
      "I have 57 cats, each owns 44 mittens, how many mittens is that in total?",
    config: {
      toolConfig: {
        functionCallingConfig: {
          mode: FunctionCallingConfigMode.ANY,
        },
      },
      tools: [
        {
          functionDeclarations: [
            addDeclaration,
            subtractDeclaration,
            multiplyDeclaration,
            divideDeclaration,
          ],
        },
      ],
    },
  });

  // Step 2: Extract the function call.(
  // Assuming the response contains a 'functionCalls' array.
  const functionCall =
    generateContentResponse.functionCalls &&
    generateContentResponse.functionCalls[0];
  console.log(functionCall);

  // Parse the arguments.
  const args = functionCall.args;
  // Expected args format: { firstParam: number, secondParam: number }

  // Step 3: Invoke the actual function based on the function name.
  const functionMapping = {
    addNumbers: add,
    subtractNumbers: subtract,
    multiplyNumbers: multiply,
    divideNumbers: divide,
  };
  const func = functionMapping[functionCall.name];
  if (!func) {
    console.error("Unimplemented error:", functionCall.name);
    return generateContentResponse;
  }
  const resultValue = func(args.firstParam, args.secondParam);
  console.log("Function result:", resultValue);

  // Step 4: Use the chat API to send the result as the final answer.
  const chat = ai.chats.create({ model: "gemini-2.0-flash" });
  const chatResponse = await chat.sendMessage({
    message: "The final result is " + resultValue,
  });
  console.log(chatResponse.text);
  return chatResponse;
}

cat > tools.json << EOF
{
  "function_declarations": [
    {
      "name": "enable_lights",
      "description": "Turn on the lighting system."
    },
    {
      "name": "set_light_color",
      "description": "Set the light color. Lights must be enabled for this to work.",
      "parameters": {
        "type": "object",
        "properties": {
          "rgb_hex": {
            "type": "string",
            "description": "The light color as a 6-digit hex string, e.g. ff0000 for red."
          }
        },
        "required": [
          "rgb_hex"
        ]
      }
    },
    {
      "name": "stop_lights",
      "description": "Turn off the lighting system."
    }
  ]
} 
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -d @<(echo '
  {
    "system_instruction": {
      "parts": {
        "text": "You are a helpful lighting system bot. You can turn lights on and off, and you can set the color. Do not perform any other tasks."
      }
    },
    "tools": ['$(cat tools.json)'],

    "tool_config": {
      "function_calling_config": {"mode": "auto"}
    },

    "contents": {
      "role": "user",
      "parts": {
        "text": "Turn on the lights please."
      }
    }
  }
') 2>/dev/null |sed -n '/"content"/,/"finishReason"/p'
fun multiply(a: Double, b: Double) = a * b

val multiplyDefinition = defineFunction(
    name = "multiply",
    description = "returns the product of the provided numbers.",
    parameters = listOf(
    Schema.double("a", "First number"),
    Schema.double("b", "Second number")
    )
)

val usableFunctions = listOf(multiplyDefinition)

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        // List the functions definitions you want to make available to the model
        tools = listOf(Tool(usableFunctions))
    )

val chat = generativeModel.startChat()
val prompt = "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"

// Send the message to the generative model
var response = chat.sendMessage(prompt)

// Check if the model responded with a function call
response.functionCalls.first { it.name == "multiply" }.apply {
    val a: String by args
    val b: String by args

    val result = JSONObject(mapOf("result" to multiply(a.toDouble(), b.toDouble())))
    response = chat.sendMessage(
        content(role = "function") {
            part(FunctionResponsePart("multiply", result))
        }
    )
}

// Whenever the model responds with text, show it in the UI
response.text?.let { modelResponse ->
    println(modelResponse)
}
// Calls a hypothetical API to control a light bulb and returns the values that were set.
func controlLight(brightness: Double, colorTemperature: String) -> JSONObject {
  return ["brightness": .number(brightness), "colorTemperature": .string(colorTemperature)]
}

let generativeModel =
  GenerativeModel(
    // Use a model that supports function calling, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    tools: [Tool(functionDeclarations: [
      FunctionDeclaration(
        name: "controlLight",
        description: "Set the brightness and color temperature of a room light.",
        parameters: [
          "brightness": Schema(
            type: .number,
            format: "double",
            description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
          ),
          "colorTemperature": Schema(
            type: .string,
            format: "enum",
            description: "Color temperature of the light fixture.",
            enumValues: ["daylight", "cool", "warm"]
          ),
        ],
        requiredParameters: ["brightness", "colorTemperature"]
      ),
    ])]
  )

let chat = generativeModel.startChat()

let prompt = "Dim the lights so the room feels cozy and warm."

// Send the message to the model.
let response1 = try await chat.sendMessage(prompt)

// Check if the model responded with a function call.
// For simplicity, this sample uses the first function call found.
guard let functionCall = response1.functionCalls.first else {
  fatalError("Model did not respond with a function call.")
}
// Print an error if the returned function was not declared
guard functionCall.name == "controlLight" else {
  fatalError("Unexpected function called: \(functionCall.name)")
}
// Verify that the names and types of the parameters match the declaration
guard case let .number(brightness) = functionCall.args["brightness"] else {
  fatalError("Missing argument: brightness")
}
guard case let .string(colorTemperature) = functionCall.args["colorTemperature"] else {
  fatalError("Missing argument: colorTemperature")
}

// Call the executable function named in the FunctionCall with the arguments specified in the
// FunctionCall and let it call the hypothetical API.
let apiResponse = controlLight(brightness: brightness, colorTemperature: colorTemperature)

// Send the API response back to the model so it can generate a text response that can be
// displayed to the user.
let response2 = try await chat.sendMessage([ModelContent(
  role: "function",
  parts: [.functionResponse(FunctionResponse(name: "controlLight", response: apiResponse))]
)])

if let text = response2.text {
  print(text)
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
Map<String, Object?> setLightValues(Map<String, Object?> args) {
  return args;
}

final controlLightFunction = FunctionDeclaration(
    'controlLight',
    'Set the brightness and color temperature of a room light.',
    Schema.object(properties: {
      'brightness': Schema.number(
          description:
              'Light level from 0 to 100. Zero is off and 100 is full brightness.',
          nullable: false),
      'colorTemperatur': Schema.string(
          description:
              'Color temperature of the light fixture which can be `daylight`, `cool`, or `warm`',
          nullable: false),
    }));

final functions = {controlLightFunction.name: setLightValues};
FunctionResponse dispatchFunctionCall(FunctionCall call) {
  final function = functions[call.name]!;
  final result = function(call.args);
  return FunctionResponse(call.name, result);
}

final model = GenerativeModel(
  model: 'gemini-1.5-pro',
  apiKey: apiKey,
  tools: [
    Tool(functionDeclarations: [controlLightFunction])
  ],
);

final prompt = 'Dim the lights so the room feels cozy and warm.';
final content = [Content.text(prompt)];
var response = await model.generateContent(content);

List<FunctionCall> functionCalls;
while ((functionCalls = response.functionCalls.toList()).isNotEmpty) {
  var responses = <FunctionResponse>[
    for (final functionCall in functionCalls)
      dispatchFunctionCall(functionCall)
  ];
  content
    ..add(response.candidates.first.content)
    ..add(Content.functionResponses(responses));
  response = await model.generateContent(content);
}
print('Response: ${response.text}');
FunctionDeclaration multiplyDefinition =
    defineFunction(
        /* name  */ "multiply",
        /* description */ "returns a * b.",
        /* parameters */ Arrays.asList(
            Schema.numDouble("a", "First parameter"),
            Schema.numDouble("b", "Second parameter")),
        /* required */ Arrays.asList("a", "b"));

Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* functionDeclarations (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// Create prompt
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText(
    "I have 57 cats, each owns 44 mittens, how many mittens is that in total?");
Content userMessage = userContentBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Initialize the chat
ChatFutures chat = model.startChat();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        if (!result.getFunctionCalls().isEmpty()) {
          handleFunctionCall(result);
        }
        if (!result.getText().isEmpty()) {
          System.out.println(result.getText());
        }
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }

      private void handleFunctionCall(GenerateContentResponse result) {
        FunctionCallPart multiplyFunctionCallPart =
            result.getFunctionCalls().stream()
                .filter(fun -> fun.getName().equals("multiply"))
                .findFirst()
                .get();
        double a = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("a"));
        double b = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("b"));

        try {
          // `multiply(a, b)` is a regular java function defined in another class
          FunctionResponsePart functionResponsePart =
              new FunctionResponsePart(
                  "multiply", new JSONObject().put("result", multiply(a, b)));

          // Create prompt
          Content.Builder functionCallResponse = new Content.Builder();
          userContentBuilder.setRole("user");
          userContentBuilder.addPart(functionResponsePart);
          Content userMessage = userContentBuilder.build();

          chat.sendMessage(userMessage);
        } catch (JSONException e) {
          throw new RuntimeException(e);
        }
      }
    },
    executor);
from google import genai
from google.genai import types

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents="Tell me a story about a magic backpack.",
    config=types.GenerateContentConfig(
        candidate_count=1,
        stop_sequences=["x"],
        max_output_tokens=20,
        temperature=1.0,
    ),
)
print(response.text)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story about a magic backpack.",
  config: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

console.log(response.text);
model := client.GenerativeModel("gemini-1.5-pro-latest")
model.SetTemperature(0.9)
model.SetTopP(0.5)
model.SetTopK(20)
model.SetMaxOutputTokens(100)
model.SystemInstruction = genai.NewUserContent(genai.Text("You are Yoda from Star Wars."))
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
        "contents": [{
            "parts":[
                {"text": "Explain how AI works"}
            ]
        }],
        "generationConfig": {
            "stopSequences": [
                "Title"
            ],
            "temperature": 1.0,
            "maxOutputTokens": 800,
            "topP": 0.8,
            "topK": 10
        }
    }'  2> /dev/null | grep "text"
val config = generationConfig {
  temperature = 0.9f
  topK = 16
  topP = 0.1f
  maxOutputTokens = 200
  stopSequences = listOf("red")
}

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        generationConfig = config)
let config = GenerationConfig(
  temperature: 0.9,
  topP: 0.1,
  topK: 16,
  candidateCount: 1,
  maxOutputTokens: 200,
  stopSequences: ["red", "orange"]
)

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    generationConfig: config
  )
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Tell me a story about a magic backpack.';

final response = await model.generateContent(
  [Content.text(prompt)],
  generationConfig: GenerationConfig(
    candidateCount: 1,
    stopSequences: ['x'],
    maxOutputTokens: 20,
    temperature: 1.0,
  ),
);
print(response.text);
GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.temperature = 0.9f;
configBuilder.topK = 16;
configBuilder.topP = 0.1f;
configBuilder.maxOutputTokens = 200;
configBuilder.stopSequences = Arrays.asList("red");

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel("gemini-1.5-flash", BuildConfig.apiKey, generationConfig);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);
from google import genai
from google.genai import types

client = genai.Client()
unsafe_prompt = (
    "I support Martians Soccer Club and I think Jupiterians Football Club sucks! "
    "Write a ironic phrase about them including expletives."
)
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=unsafe_prompt,
    config=types.GenerateContentConfig(
        safety_settings=[
            types.SafetySetting(
                category="HARM_CATEGORY_HATE_SPEECH",
                threshold="BLOCK_MEDIUM_AND_ABOVE",
            ),
            types.SafetySetting(
                category="HARM_CATEGORY_HARASSMENT", threshold="BLOCK_ONLY_HIGH"
            ),
        ]
    ),
)
try:
    print(response.text)
except Exception:
    print("No information generated by the model.")

print(response.candidates[0].safety_ratings)
  // Make sure to include the following import:
  // import {GoogleGenAI} from '@google/genai';
  const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
  const unsafePrompt =
    "I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them including expletives.";

  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: unsafePrompt,
    config: {
      safetySettings: [
        {
          category: "HARM_CATEGORY_HATE_SPEECH",
          threshold: "BLOCK_MEDIUM_AND_ABOVE",
        },
        {
          category: "HARM_CATEGORY_HARASSMENT",
          threshold: "BLOCK_ONLY_HIGH",
        },
      ],
    },
  });

  try {
    console.log("Generated text:", response.text);
  } catch (error) {
    console.log("No information generated by the model.");
  }
  console.log("Safety ratings:", response.candidates[0].safetyRatings);
  return response;
}
model := client.GenerativeModel("gemini-1.5-flash")
model.SafetySettings = []*genai.SafetySetting{
	{
		Category:  genai.HarmCategoryDangerousContent,
		Threshold: genai.HarmBlockLowAndAbove,
	},
	{
		Category:  genai.HarmCategoryHarassment,
		Threshold: genai.HarmBlockMediumAndAbove,
	},
}
resp, err := model.GenerateContent(ctx, genai.Text("I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them."))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)
echo '{
    "safetySettings": [
        {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"},
        {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
    ],
    "contents": [{
        "parts":[{
            "text": "'I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them.'"}]}]}' > request.json

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d @request.json 2> /dev/null
val harassmentSafety = SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)

val hateSpeechSafety = SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE)

val generativeModel =
    GenerativeModel(
        // The Gemini 1.5 models are versatile and work with most use cases
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        safetySettings = listOf(harassmentSafety, hateSpeechSafety))
let safetySettings = [
  SafetySetting(harmCategory: .dangerousContent, threshold: .blockLowAndAbove),
  SafetySetting(harmCategory: .harassment, threshold: .blockMediumAndAbove),
  SafetySetting(harmCategory: .hateSpeech, threshold: .blockOnlyHigh),
]

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    safetySettings: safetySettings
  )
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'I support Martians Soccer Club and I think '
    'Jupiterians Football Club sucks! Write an ironic phrase telling '
    'them how I feel about them.';

final response = await model.generateContent(
  [Content.text(prompt)],
  safetySettings: [
    SafetySetting(HarmCategory.harassment, HarmBlockThreshold.medium),
    SafetySetting(HarmCategory.hateSpeech, HarmBlockThreshold.low),
  ],
);
try {
  print(response.text);
} catch (e) {
  print(e);
  for (final SafetyRating(:category, :probability)
      in response.candidates.first.safetyRatings!) {
    print('Safety Rating: $category - $probability');
  }
}
SafetySetting harassmentSafety =
    new SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH);

SafetySetting hateSpeechSafety =
    new SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        "gemini-1.5-flash",
        BuildConfig.apiKey,
        null, // generation config is optional
        Arrays.asList(harassmentSafety, hateSpeechSafety));

GenerativeModelFutures model = GenerativeModelFutures.from(gm);
from google import genai
from google.genai import types

client = genai.Client()
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents="Good morning! How are you?",
    config=types.GenerateContentConfig(
        system_instruction="You are a cat. Your name is Neko."
    ),
)
print(response.text)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Good morning! How are you?",
  config: {
    systemInstruction: "You are a cat. Your name is Neko.",
  },
});
console.log(response.text);
model := client.GenerativeModel("gemini-1.5-flash")
model.SystemInstruction = genai.NewUserContent(genai.Text("You are a cat. Your name is Neko."))
resp, err := model.GenerateContent(ctx, genai.Text("Good morning! How are you?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{ "system_instruction": {
    "parts":
      { "text": "You are a cat. Your name is Neko."}},
    "contents": {
      "parts": {
        "text": "Hello there"}}}'
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        systemInstruction = content { text("You are a cat. Your name is Neko.") },
    )
let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
  )
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
final prompt = 'Good morning! How are you?';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);
GenerativeModel model =
    new GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        /* modelName */ "gemini-1.5-flash",
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ null,
        /* toolsConfig (optional) */ null,
        /* systemInstruction (optional) */ new Content.Builder()
            .addText("You are a cat. Your name is Neko.")
            .build());

بدن پاسخگو

در صورت موفقیت آمیز بودن، بدنه پاسخ حاوی نمونه ای از GenerateContentResponse است.

روش: tunedModels.streamGenerateContent

یک پاسخ جریانی از مدل با یک ورودی GenerateContentRequest ایجاد می کند.

نقطه پایانی

پست https: / /generativelanguage.googleapis.com /v1beta /{model=tunedModels /*}:streamGenerateContent

پارامترهای مسیر

string model

مورد نیاز. نام Model که برای ایجاد تکمیل استفاده می شود.

قالب: models/{model} . به شکل tunedModels/{tunedmodel} است.

درخواست بدن

بدنه درخواست حاوی داده هایی با ساختار زیر است:

فیلدها
contents[] object ( Content )

مورد نیاز. محتوای گفتگوی فعلی با مدل.

برای پرس و جوهای تک نوبتی، این یک نمونه است. برای جستجوهای چند نوبتی مانند چت ، این یک فیلد تکراری است که حاوی تاریخچه مکالمه و آخرین درخواست است.

tools[] object ( Tool )

اختیاری. فهرستی از Tools Model ممکن است برای ایجاد پاسخ بعدی استفاده کند.

Tool قطعه ای از کد است که سیستم را قادر می سازد تا با سیستم های خارجی برای انجام یک عمل یا مجموعه ای از اقدامات خارج از دانش و محدوده Model تعامل داشته باشد. Tool پشتیبانی شده Function و codeExecution هستند. برای کسب اطلاعات بیشتر به فراخوانی تابع و راهنمای اجرای کد مراجعه کنید.

شی toolConfig object ( ToolConfig )

اختیاری. پیکربندی ابزار برای هر Tool در درخواست مشخص شده است. برای مثال استفاده به راهنمای فراخوانی تابع مراجعه کنید.

شیء safetySettings[] object ( SafetySetting )

اختیاری. فهرستی از نمونه‌های SafetySetting منحصر به فرد برای مسدود کردن محتوای ناامن.

این در GenerateContentRequest.contents و GenerateContentResponse.candidates اعمال خواهد شد. برای هر نوع SafetyCategory نباید بیش از یک تنظیم وجود داشته باشد. API هر محتوا و پاسخی را که نتواند آستانه تعیین شده توسط این تنظیمات را برآورده کند مسدود می کند. این فهرست تنظیمات پیش‌فرض را برای هر SafetyCategory مشخص‌شده در تنظیمات ایمنی لغو می‌کند. اگر هیچ SafetySetting برای یک SafetyCategory معین در لیست ارائه نشده باشد، API از تنظیمات ایمنی پیش‌فرض برای آن دسته استفاده می‌کند. دسته‌های آسیب HARM_CATEGORY_HATE_SPEECH، HARM_CATEGORY_SEXUALLY_EXPLICIT، HARM_CATEGORY_DANGEROUS_CONTENT، HARM_CATEGORY_HARASSMENT، HARM_CATEGORY_CIVIC_INTEGRITY پشتیبانی می‌شوند. برای اطلاعات دقیق در مورد تنظیمات ایمنی موجود به راهنما مراجعه کنید. همچنین به راهنمای ایمنی مراجعه کنید تا یاد بگیرید چگونه ملاحظات ایمنی را در برنامه های هوش مصنوعی خود لحاظ کنید.

شی systemInstruction object ( Content )

اختیاری. دستورالعمل(های) سیستم مجموعه توسعه دهنده. در حال حاضر فقط متن است.

شی generationConfig object ( GenerationConfig )

اختیاری. گزینه های پیکربندی برای تولید مدل و خروجی ها.

cachedContent string

اختیاری. نام محتوای ذخیره شده در حافظه پنهان برای استفاده به عنوان زمینه برای ارائه پیش بینی. قالب: cachedContents/{cachedContent}

درخواست نمونه

from google import genai

client = genai.Client()
response = client.models.generate_content_stream(
    model="gemini-2.0-flash", contents="Write a story about a magic backpack."
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}
model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=${GEMINI_API_KEY}" \
        -H 'Content-Type: application/json' \
        --no-buffer \
        -d '{ "contents":[{"parts":[{"text": "Write a story about a magic backpack."}]}]}'
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
generativeModel.generateContentStream(prompt).collect { chunk -> print(chunk.text) }
let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
for try await response in generativeModel.generateContentStream(prompt) {
  if let text = response.text {
    print(text)
  }
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final responses = model.generateContentStream([Content.text(prompt)]);
await for (final response in responses) {
  print(response.text);
}
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });
from google import genai
import PIL.Image

client = genai.Client()
organ = PIL.Image.open(media / "organ.jpg")
response = client.models.generate_content_stream(
    model="gemini-2.0-flash", contents=["Tell me about this instrument", organ]
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

const organ = await ai.files.upload({
  file: path.join(media, "organ.jpg"),
});

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me about this instrument", 
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}
model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}
iter := model.GenerateContentStream(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}
cat > "$TEMP_JSON" << EOF
{
  "contents": [{
    "parts":[
      {"text": "Tell me about this instrument"},
      {
        "inline_data": {
          "mime_type":"image/jpeg",
          "data": "$(cat "$TEMP_B64")"
        }
      }
    ]
  }]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d "@$TEMP_JSON" 2> /dev/null
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

generativeModel.generateContentStream(inputContent).collect { chunk -> print(chunk.text) }
let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

for try await response in generativeModel.generateContentStream(image, prompt) {
  if let text = response.text {
    print(text)
  }
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final responses = model.generateContentStream([
  Content.multi([TextPart(prompt), image])
]);
await for (final response in responses) {
  print(response.text);
}
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image1)
        .addImage(image2)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });
from google import genai

client = genai.Client()
sample_audio = client.files.upload(file=media / "sample.mp3")
response = client.models.generate_content_stream(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this audio file.", sample_audio],
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)
# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo
from google import genai
import time

client = genai.Client()
# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = client.files.upload(file=media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    myfile = client.files.get(name=myfile.name)

response = client.models.generate_content_stream(
    model="gemini-2.0-flash", contents=[myfile, "Describe this video clip"]
)
for chunk in response:
    print(chunk.text)
    print("_" * 80)
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });

let video = await ai.files.upload({
  file: path.join(media, 'Big_Buck_Bunny.mp4'),
});

// Poll until the video file is completely processed (state becomes ACTIVE).
while (!video.state || video.state.toString() !== 'ACTIVE') {
  console.log('Processing video...');
  console.log('File state: ', video.state);
  await sleep(5000);
  video = await ai.files.get({name: video.name});
}

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Describe this video clip",
      createPartFromUri(video.uri, video.mimeType),
    ]),
  ],
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}
model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

iter := model.GenerateContentStream(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}
# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo
from google import genai

client = genai.Client()
sample_pdf = client.files.upload(file=media / "test.pdf")
response = client.models.generate_content_stream(
    model="gemini-2.0-flash",
    contents=["Give me a summary of this document:", sample_pdf],
)

for chunk in response:
    print(chunk.text)
    print("_" * 80)
MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo
from google import genai
from google.genai import types

client = genai.Client()
chat = client.chats.create(
    model="gemini-2.0-flash",
    history=[
        types.Content(role="user", parts=[types.Part(text="Hello")]),
        types.Content(
            role="model",
            parts=[
                types.Part(
                    text="Great to meet you. What would you like to know?"
                )
            ],
        ),
    ],
)
response = chat.send_message_stream(message="I have 2 dogs in my house.")
for chunk in response:
    print(chunk.text)
    print("_" * 80)
response = chat.send_message_stream(message="How many paws are in my house?")
for chunk in response:
    print(chunk.text)
    print("_" * 80)

print(chat.get_history())
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

console.log("Streaming response for first message:");
const stream1 = await chat.sendMessageStream({
  message: "I have 2 dogs in my house.",
});
for await (const chunk of stream1) {
  console.log(chunk.text);
  console.log("_".repeat(80));
}

console.log("Streaming response for second message:");
const stream2 = await chat.sendMessageStream({
  message: "How many paws are in my house?",
});
for await (const chunk of stream2) {
  console.log(chunk.text);
  console.log("_".repeat(80));
}

console.log(chat.getHistory());
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

iter := cs.SendMessageStream(ctx, genai.Text("How many paws are in my house?"))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"
// Use streaming with multi-turn conversations (like chat)
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

chat.sendMessageStream("How many paws are in my house?").collect { chunk -> print(chunk.text) }
let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To stream generated text output, call sendMessageStream and pass in the message
let contentStream = chat.sendMessageStream("How many paws are in my house?")
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var responses =
    chat.sendMessageStream(Content.text('I have 2 dogs in my house.'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}
responses =
    chat.sendMessageStream(Content.text('How many paws are in my house?'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// Use streaming with text-only input
Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(userMessage);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }

      @Override
      public void onError(Throwable t) {}

    });

بدن پاسخگو

در صورت موفقیت آمیز بودن، بدنه پاسخ حاوی جریانی از نمونه های GenerateContentResponse است.

روش: tunedModels.get

اطلاعاتی در مورد یک TunedModel خاص دریافت می کند.

نقطه پایانی

https: / /generativelanguage.googleapis.com /v1beta /{name=tunedModels /*} را دریافت کنید

پارامترهای مسیر

string name

مورد نیاز. نام منبع مدل

قالب: tunedModels/my-model-id به شکل tunedModels/{tunedmodel} است.

درخواست بدن

بدنه درخواست باید خالی باشد.

درخواست نمونه

پایتون
# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

بدن پاسخگو

در صورت موفقیت آمیز بودن، بدنه پاسخ حاوی نمونه ای از TunedModel است.

روش: tunedModels.list

مدل های تنظیم شده را لیست می کند.

نقطه پایانی

https: / /generativelanguage.googleapis.com /v1beta /tunedModels دریافت کنید

پارامترهای پرس و جو

pageSize integer

اختیاری. حداکثر تعداد TunedModels برای بازگشت (در هر صفحه). این سرویس ممکن است مدل های تنظیم شده کمتری را برگرداند.

در صورت نامشخص، حداکثر 10 مدل تیون شده عودت داده می شود. این روش حداکثر 1000 مدل را در هر صفحه برمی گرداند، حتی اگر یک pageSize بزرگتر را ارسال کنید.

string pageToken

اختیاری. یک نشانه صفحه، دریافت شده از تماس قبلی tunedModels.list .

pageToken را که توسط یک درخواست بازگردانده شده است به عنوان آرگومان برای درخواست بعدی برای بازیابی صفحه بعدی ارائه دهید.

هنگام صفحه بندی، تمام پارامترهای دیگر ارائه شده به tunedModels.list باید با فراخوانی که توکن صفحه را ارائه می کند مطابقت داشته باشد.

string filter

اختیاری. فیلتر یک جستجوی متن کامل بر روی توضیحات و نام نمایشی مدل تنظیم شده است. به‌طور پیش‌فرض، نتایج شامل مدل‌های تنظیم‌شده به اشتراک‌گذاشته‌شده با همه نمی‌شود.

اپراتورهای اضافی: - مالک: من - نویسندگان: من - خوانندگان: من - خوانندگان: همه

مثال‌ها: «owner:me» همه مدل‌های تنظیم‌شده‌ای را که تماس‌گیرنده نقش مالک دارد، برمی‌گرداند «خوانندگان: من» همه مدل‌های تنظیم‌شده‌ای را که تماس‌گیرنده نقش خواننده دارند، «خوانندگان: همه» همه مدل‌های تنظیم‌شده را که با همه به اشتراک گذاشته شده است، برمی‌گرداند.

درخواست بدن

بدنه درخواست باید خالی باشد.

درخواست نمونه

پایتون
# With Gemini 2 we're launching a new SDK. See the following doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

بدن پاسخگو

پاسخی از tunedModels.list حاوی فهرست صفحه‌بندی‌شده مدل‌ها.

در صورت موفقیت آمیز بودن، بدنه پاسخ حاوی داده هایی با ساختار زیر است:

فیلدها
شیء tunedModels[] object ( TunedModel )

مدل های برگشتی

string nextPageToken

یک نشانه، که می تواند به عنوان pageToken برای بازیابی صفحه بعدی ارسال شود.

اگر این قسمت حذف شود، صفحه دیگری وجود ندارد.

نمایندگی JSON
{
  "tunedModels": [
    {
      object (TunedModel)
    }
  ],
  "nextPageToken": string
}

روش: tunedModels.patch

یک مدل تنظیم شده را به روز می کند.

نقطه پایانی

پچ https: / /generativelanguage.googleapis.com /v1beta /{tunedModel.name=tunedModels /*}
PATCH https://generativelanguage.googleapis.com/v1beta/{tunedModel.name=tunedModels/*}

پارامترهای مسیر

string tunedModel.name

فقط خروجی نام مدل تنظیم شده. یک نام منحصر به فرد در ایجاد ایجاد می شود. مثال: tunedModels/az2mb0bpw6i اگر displayName روی ایجاد تنظیم شده باشد، قسمت id نام با به هم پیوستن کلمات displayName با خط فاصله و افزودن یک بخش تصادفی برای منحصربه‌فرد بودن تنظیم می‌شود.

مثال:

  • displayName = Sentence Translator
  • name = tunedModels/sentence-translator-u3b7m به شکل tunedModels/{tunedmodel} است.

پارامترهای پرس و جو

رشته updateMask string ( FieldMask format)

اختیاری. لیست فیلدهایی که باید به روز شوند.

این فهرستی از نام‌های فیلدهای کاملاً واجد شرایط با کاما است. مثال: "user.displayName,photo" .

درخواست بدن

بدنه درخواست شامل یک نمونه از TunedModel است.

فیلدها
string displayName

اختیاری. نامی که برای این مدل در رابط های کاربری نمایش داده می شود. نام نمایشی باید حداکثر 40 کاراکتر شامل فاصله باشد.

string description

اختیاری. توضیح کوتاهی در مورد این مدل

شیء tuningTask object ( TuningTask )

مورد نیاز. وظیفه تنظیم که مدل کوک شده را ایجاد می کند.

رشته readerProjectNumbers[] string ( int64 format)

اختیاری. لیست شماره پروژه هایی که به مدل تنظیم شده دسترسی خواندن دارند.

source_model Union type
مدلی که به عنوان نقطه شروع برای تنظیم استفاده می شود. source_model تنها می تواند یکی از موارد زیر باشد:
شیء tunedModelSource object ( TunedModelSource )

اختیاری. از TunedModel به عنوان نقطه شروع برای آموزش مدل جدید استفاده کنید.

number temperature

اختیاری. تصادفی بودن خروجی را کنترل می کند.

مقادیر می توانند بیش از [0.0,1.0] ، شامل محدوده باشند. یک مقدار نزدیک به 1.0 پاسخ هایی را ایجاد می کند که متنوع تر هستند، در حالی که مقدار نزدیک به 0.0 معمولاً منجر به پاسخ های شگفت انگیز کمتری از مدل می شود.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

number topP

اختیاری. برای نمونه برداری هسته

نمونه برداری هسته کوچکترین مجموعه ای از نشانه ها را در نظر می گیرد که مجموع احتمال آنها حداقل topP باشد.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

topK integer

اختیاری. برای نمونه گیری Top-k.

نمونه گیری Top-k مجموعه ای از محتمل ترین توکن های topK را در نظر می گیرد. این مقدار پیش‌فرض را مشخص می‌کند که در هنگام برقراری تماس با مدل توسط backend استفاده شود.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

بدن پاسخگو

در صورت موفقیت آمیز بودن، بدنه پاسخ حاوی نمونه ای از TunedModel است.

روش: tunedModels.delete

یک مدل تنظیم شده را حذف می کند.

نقطه پایانی

حذف https: / /generativelanguage.googleapis.com /v1beta /{name=tunedModels /*}

پارامترهای مسیر

string name

مورد نیاز. نام منبع مدل قالب: tunedModels/my-model-id به شکل tunedModels/{tunedmodel} است.

درخواست بدن

بدنه درخواست باید خالی باشد.

بدن پاسخگو

در صورت موفقیت آمیز بودن، بدنه پاسخ یک شی JSON خالی است.

منبع REST: tunedModels

منبع: TunedModel

یک مدل تنظیم شده با استفاده از ModelService.CreateTunedModel ایجاد شده است.

فیلدها
string name

فقط خروجی نام مدل تنظیم شده. یک نام منحصر به فرد در ایجاد ایجاد می شود. مثال: tunedModels/az2mb0bpw6i اگر displayName روی ایجاد تنظیم شده باشد، قسمت id نام با به هم پیوستن کلمات displayName با خط فاصله و افزودن یک بخش تصادفی برای منحصربه‌فرد بودن تنظیم می‌شود.

مثال:

  • displayName = Sentence Translator
  • name = tunedModels/sentence-translator-u3b7m
string displayName

اختیاری. نامی که برای این مدل در رابط های کاربری نمایش داده می شود. نام نمایشی باید حداکثر 40 کاراکتر از جمله فاصله باشد.

string description

اختیاری. توضیح کوتاهی در مورد این مدل

state enum ( State )

فقط خروجی وضعیت مدل تنظیم شده.

رشته createTime string ( Timestamp format)

فقط خروجی مهر زمانی که این مدل ایجاد شد.

از RFC 3339 استفاده می کند، که در آن خروجی تولید شده همیشه با Z نرمال می شود و از 0، 3، 6 یا 9 رقم کسری استفاده می کند. افست های غیر از "Z" نیز پذیرفته می شود. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

رشته updateTime string ( Timestamp format)

فقط خروجی مهر زمانی که این مدل به روز شد.

از RFC 3339 استفاده می کند، که در آن خروجی تولید شده همیشه با Z نرمال می شود و از 0، 3، 6 یا 9 رقم کسری استفاده می کند. افست های غیر از "Z" نیز پذیرفته می شود. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

شیء tuningTask object ( TuningTask )

مورد نیاز. وظیفه تنظیم که مدل کوک شده را ایجاد می کند.

رشته readerProjectNumbers[] string ( int64 format)

اختیاری. لیست شماره پروژه هایی که به مدل تنظیم شده دسترسی خواندن دارند.

source_model Union type
مدلی که به عنوان نقطه شروع برای تنظیم استفاده می شود. source_model تنها می تواند یکی از موارد زیر باشد:
شیء tunedModelSource object ( TunedModelSource )

اختیاری. از TunedModel به عنوان نقطه شروع برای آموزش مدل جدید استفاده کنید.

string baseModel

تغییرناپذیر. نام Model برای کوک کردن. مثال: models/gemini-1.5-flash-001

number temperature

اختیاری. تصادفی بودن خروجی را کنترل می کند.

مقادیر می توانند بیش از [0.0,1.0] ، شامل محدوده باشند. یک مقدار نزدیک به 1.0 پاسخ هایی را ایجاد می کند که متنوع تر هستند، در حالی که مقدار نزدیک به 0.0 معمولاً منجر به پاسخ های شگفت انگیز کمتری از مدل می شود.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

number topP

اختیاری. برای نمونه برداری هسته

نمونه برداری هسته کوچکترین مجموعه ای از نشانه ها را در نظر می گیرد که مجموع احتمال آنها حداقل topP باشد.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

topK integer

اختیاری. برای نمونه گیری Top-k.

نمونه گیری Top-k مجموعه ای از محتمل ترین توکن های topK را در نظر می گیرد. این مقدار پیش‌فرض را مشخص می‌کند که در هنگام برقراری تماس با مدل توسط backend استفاده شود.

این مقدار پیش‌فرض را مشخص می‌کند که مدل پایه هنگام ایجاد مدل استفاده می‌کند.

نمایندگی JSON
{
  "name": string,
  "displayName": string,
  "description": string,
  "state": enum (State),
  "createTime": string,
  "updateTime": string,
  "tuningTask": {
    object (TuningTask)
  },
  "readerProjectNumbers": [
    string
  ],

  // source_model
  "tunedModelSource": {
    object (TunedModelSource)
  },
  "baseModel": string
  // Union type
  "temperature": number,
  "topP": number,
  "topK": integer
}

TunedModelSource

مدل تیون شده به عنوان منبعی برای آموزش مدل جدید.

فیلدها
string tunedModel

تغییرناپذیر. نام TunedModel برای استفاده به عنوان نقطه شروع برای آموزش مدل جدید. مثال: tunedModels/my-tuned-model

string baseModel

فقط خروجی نام Model پایه این TunedModel از آن تنظیم شده است. مثال: models/gemini-1.5-flash-001

نمایندگی JSON
{
  "tunedModel": string,
  "baseModel": string
}

ایالت

وضعیت مدل تنظیم شده.

Enums
STATE_UNSPECIFIED مقدار پیش فرض این مقدار استفاده نشده است.
CREATING مدل در حال ایجاد است.
ACTIVE مدل آماده استفاده است.
FAILED مدل ایجاد نشد.

TuningTask

کارهای تنظیمی که مدل های تنظیم شده ایجاد می کنند.

فیلدها
رشته startTime string ( Timestamp format)

فقط خروجی مهر زمانی که تنظیم این مدل شروع شد.

از RFC 3339 استفاده می کند، که در آن خروجی تولید شده همیشه با Z نرمال می شود و از 0، 3، 6 یا 9 رقم کسری استفاده می کند. افست های غیر از "Z" نیز پذیرفته می شود. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

رشته completeTime string ( Timestamp format)

فقط خروجی مهر زمانی هنگام تنظیم این مدل تکمیل شد.

از RFC 3339 استفاده می کند، که در آن خروجی تولید شده همیشه با Z نرمال می شود و از 0، 3، 6 یا 9 رقم کسری استفاده می کند. افست های غیر از "Z" نیز پذیرفته می شود. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

snapshots[] object ( TuningSnapshot )

فقط خروجی معیارهای جمع آوری شده در طول تنظیم.

شی trainingData object ( Dataset )

مورد نیاز. فقط ورودی تغییرناپذیر. داده های آموزش مدل

شی hyperparameters object ( Hyperparameters )

تغییرناپذیر. فراپارامترهایی که فرآیند تنظیم را کنترل می کنند. در صورت عدم ارائه، از مقادیر پیش فرض استفاده خواهد شد.

نمایندگی JSON
{
  "startTime": string,
  "completeTime": string,
  "snapshots": [
    {
      object (TuningSnapshot)
    }
  ],
  "trainingData": {
    object (Dataset)
  },
  "hyperparameters": {
    object (Hyperparameters)
  }
}

TuningSnapshot

برای یک مرحله کوک ضبط کنید.

فیلدها
step integer

فقط خروجی مرحله تنظیم.

integer epoch ای

فقط خروجی دوره ای که این مرحله بخشی از آن بود.

meanLoss number

فقط خروجی میانگین از دست دادن مثال های آموزشی برای این مرحله.

string ( Timestamp format) computeTime (قالب زمان مهر)

فقط خروجی مهر زمانی که این متریک محاسبه شد.

از RFC 3339 استفاده می کند، که در آن خروجی تولید شده همیشه با Z نرمال می شود و از 0، 3، 6 یا 9 رقم کسری استفاده می کند. افست های غیر از "Z" نیز پذیرفته می شود. مثال‌ها: "2014-10-02T15:01:23Z" ، "2014-10-02T15:01:23.045123456Z" یا "2014-10-02T15:01:23+05:30" .

نمایندگی JSON
{
  "step": integer,
  "epoch": integer,
  "meanLoss": number,
  "computeTime": string
}

مجموعه داده

مجموعه داده برای آموزش یا اعتبار سنجی

فیلدها
Union type dataset
داده های درون خطی یا ارجاع به داده ها. dataset می تواند تنها یکی از موارد زیر باشد:
examples object ( TuningExamples )

اختیاری. نمونه های درون خطی با متن ورودی/خروجی ساده.

نمایندگی JSON
{

  // dataset
  "examples": {
    object (TuningExamples)
  }
  // Union type
}

نمونه های تنظیم

مجموعه ای از نمونه های تنظیم. می تواند داده های آموزشی یا اعتبار سنجی باشد.

فیلدها
examples[] object ( TuningExample )

نمونه ها ورودی مثال می تواند برای متن یا بحث باشد، اما همه مثال ها در یک مجموعه باید از یک نوع باشند.

نمایندگی JSON
{
  "examples": [
    {
      object (TuningExample)
    }
  ]
}

نمونه تنظیم

یک مثال واحد برای تنظیم.

فیلدها
string output

مورد نیاز. خروجی مدل مورد انتظار

model_input Union type
ورودی مدل برای این مثال. model_input فقط می تواند یکی از موارد زیر باشد:
textInput string

اختیاری. ورودی مدل متن

نمایندگی JSON
{
  "output": string,

  // model_input
  "textInput": string
  // Union type
}

فراپارامترها

فراپارامترهایی که فرآیند تنظیم را کنترل می کنند. در https://ai.google.dev/docs/model_tuning_guidance بیشتر بخوانید

فیلدها
learning_rate_option Union type
گزینه هایی برای تعیین میزان یادگیری در طول تنظیم. learning_rate_option تنها می تواند یکی از موارد زیر باشد:
number learningRate

اختیاری. تغییرناپذیر. فراپارامتر نرخ یادگیری برای تنظیم. اگر تنظیم نشود، پیش فرض 0.001 یا 0.0002 بر اساس تعداد نمونه های آموزشی محاسبه می شود.

learningRateMultiplier number

اختیاری. تغییرناپذیر. ضریب نرخ یادگیری برای محاسبه نرخ یادگیری نهایی بر اساس مقدار پیش فرض (توصیه شده) استفاده می شود. نرخ یادگیری واقعی:= LearnRateMultiplier * نرخ یادگیری پیش‌فرض نرخ یادگیری پیش‌فرض به مدل پایه و اندازه مجموعه بستگی دارد. اگر تنظیم نشود، پیش فرض 1.0 استفاده خواهد شد.

epochCount integer

تغییرناپذیر. تعداد دوره های آموزشی یک دوره یک گذر از داده های آموزشی است. اگر تنظیم نشده باشد، پیش فرض 5 استفاده خواهد شد.

batchSize integer

تغییرناپذیر. فراپارامتر اندازه دسته برای تنظیم. اگر تنظیم نشده باشد، بر اساس تعداد نمونه های آموزشی، از 4 یا 16 پیش فرض استفاده می شود.

نمایندگی JSON
{

  // learning_rate_option
  "learningRate": number,
  "learningRateMultiplier": number
  // Union type
  "epochCount": integer,
  "batchSize": integer
}