Em um fluxo de trabalho de IA típico, é possível transmitir os mesmos tokens de entrada várias vezes para um modelo. A API Gemini oferece dois mecanismos de cache diferentes:
- Armazenamento em cache implícito (ativado automaticamente na maioria dos modelos do Gemini, sem garantia de economia de custos)
- Armazenamento em cache explícito (pode ser ativado manualmente na maioria dos modelos, garantia de economia de custos)
O armazenamento em cache explícito é útil quando você quer garantir economia de custos, mas com algum trabalho extra do desenvolvedor.
Armazenamento em cache implícito
O armazenamento em cache implícito está ativado por padrão e disponível para a maioria dos modelos do Gemini. Transferimos automaticamente a economia de custos se sua solicitação atingir os caches. Não é necessário fazer nada para ativar esse recurso. Ela entra em vigor em 8 de maio de 2025. A contagem mínima de tokens de entrada para o cache de contexto está listada na tabela a seguir para cada modelo:
| Modelo | Limite mínimo de tokens |
|---|---|
| Pré-lançamento do Gemini 3 Flash | 1024 |
| Pré-lançamento do Gemini 3 Pro | 4096 |
| Gemini 2.5 Flash | 1024 |
| Gemini 2.5 Pro | 4096 |
Para aumentar a chance de uma ocorrência implícita em cache:
- Tente colocar conteúdos grandes e comuns no início do comando
- Tente enviar solicitações com prefixos semelhantes em um curto período
Você pode conferir o número de tokens que foram hits de cache no campo usage_metadata do objeto de resposta.
Armazenamento em cache explícito
Com o recurso de armazenamento em cache explícito da API Gemini, é possível transmitir algum conteúdo para o modelo uma vez, armazenar em cache os tokens de entrada e consultar os tokens armazenados para solicitações subsequentes. Em determinados volumes, usar tokens em cache é mais barato do que transmitir o mesmo conjunto de tokens repetidamente.
Ao armazenar um conjunto de tokens em cache, você pode escolher por quanto tempo quer que o cache exista antes que os tokens sejam excluídos automaticamente. Essa duração do armazenamento em cache é chamada de time to live (TTL). Se não for definido, o TTL será de 1 hora. O custo do armazenamento em cache depende do tamanho do token de entrada e de quanto tempo você quer que os tokens persistam.
Nesta seção, presumimos que você instalou um SDK do Gemini (ou tem o curl instalado) e configurou uma chave de API, conforme mostrado no início rápido.
Gerar conteúdo usando um cache
Python
O exemplo a seguir mostra como gerar conteúdo usando uma instrução do sistema em cache e um arquivo de vídeo.
Vídeos
import os
import pathlib
import requests
import time
from google import genai
from google.genai import types
client = genai.Client()
# Download a test video file and save it locally
url = 'https://storage.googleapis.com/generativeai-downloads/data/SherlockJr._10min.mp4'
path_to_video_file = pathlib.Path('SherlockJr._10min.mp4')
if not path_to_video_file.exists():
path_to_video_file.write_bytes(requests.get(url).content)
# Upload the video using the Files API
video_file = client.files.upload(file=path_to_video_file)
# Wait for the file to finish processing
while video_file.state.name == 'PROCESSING':
time.sleep(2.5)
video_file = client.files.get(name=video_file.name)
print(f'Video processing complete: {video_file.uri}')
model='models/gemini-3-flash-preview'
# Create a cache with a 5 minute TTL (300 seconds)
cache = client.caches.create(
model=model,
config=types.CreateCachedContentConfig(
display_name='sherlock jr movie', # used to identify the cache
system_instruction=(
'You are an expert video analyzer, and your job is to answer '
'the user\'s query based on the video file you have access to.'
),
contents=[video_file],
ttl="300s",
)
)
response = client.models.generate_content(
model = model,
contents= (
'Introduce different characters in the movie by describing '
'their personality, looks, and names. Also list the timestamps '
'they were introduced for the first time.'),
config=types.GenerateContentConfig(cached_content=cache.name)
)
print(response.usage_metadata)
print(response.text)
PDFs
from google import genai
from google.genai import types
import io
import httpx
client = genai.Client()
long_context_pdf_path = "https://sma.nasa.gov/SignificantIncidents/assets/a11_missionreport.pdf"
# Retrieve and upload the PDF using the File API
doc_io = io.BytesIO(httpx.get(long_context_pdf_path).content)
document = client.files.upload(
file=doc_io,
config=dict(mime_type='application/pdf')
)
model_name = "gemini-3-flash-preview"
system_instruction = "You are an expert analyzing transcripts."
# Create a cached content object
cache = client.caches.create(
model=model_name,
config=types.CreateCachedContentConfig(
system_instruction=system_instruction,
contents=[document],
)
)
print(f'{cache=}')
response = client.models.generate_content(
model=model_name,
contents="Please summarize this transcript",
config=types.GenerateContentConfig(
cached_content=cache.name
))
print(f'{response.usage_metadata=}')
print('\n\n', response.text)
JavaScript
O exemplo a seguir mostra como gerar conteúdo usando uma instrução de sistema em cache e um arquivo de texto.
import {
GoogleGenAI,
createUserContent,
createPartFromUri,
} from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const doc = await ai.files.upload({
file: "path/to/file.txt",
config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", doc.name);
const modelName = "gemini-3-flash-preview";
const cache = await ai.caches.create({
model: modelName,
config: {
contents: createUserContent(createPartFromUri(doc.uri, doc.mimeType)),
systemInstruction: "You are an expert analyzing transcripts.",
},
});
console.log("Cache created:", cache);
const response = await ai.models.generateContent({
model: modelName,
contents: "Please summarize this transcript",
config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);
}
await main();
Go
O exemplo a seguir mostra como gerar conteúdo usando um cache.
package main
import (
"context"
"fmt"
"log"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: "GOOGLE_API_KEY",
Backend: genai.BackendGeminiAPI,
})
if err != nil {
log.Fatal(err)
}
modelName := "gemini-3-flash-preview"
document, err := client.Files.UploadFromPath(
ctx,
"media/a11.txt",
&genai.UploadFileConfig{
MIMEType: "text/plain",
},
)
if err != nil {
log.Fatal(err)
}
parts := []*genai.Part{
genai.NewPartFromURI(document.URI, document.MIMEType),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
cache, err := client.Caches.Create(ctx, modelName, &genai.CreateCachedContentConfig{
Contents: contents,
SystemInstruction: genai.NewContentFromText(
"You are an expert analyzing transcripts.", genai.RoleUser,
),
})
if err != nil {
log.Fatal(err)
}
fmt.Println("Cache created:")
fmt.Println(cache)
// Use the cache for generating content.
response, err := client.Models.GenerateContent(
ctx,
modelName,
genai.Text("Please summarize this transcript"),
&genai.GenerateContentConfig{
CachedContent: cache.Name,
},
)
if err != nil {
log.Fatal(err)
}
printResponse(response) // helper for printing response parts
}
REST
O exemplo a seguir mostra como criar um cache e usá-lo para gerar conteúdo.
Vídeos
wget https://storage.googleapis.com/generativeai-downloads/data/a11.txt
echo '{
"model": "models/gemini-3-flash-preview",
"contents":[
{
"parts":[
{
"inline_data": {
"mime_type":"text/plain",
"data": "'$(base64 $B64FLAGS a11.txt)'"
}
}
],
"role": "user"
}
],
"systemInstruction": {
"parts": [
{
"text": "You are an expert at analyzing transcripts."
}
]
},
"ttl": "300s"
}' > request.json
curl -X POST "https://generativelanguage.googleapis.com/v1beta/cachedContents?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d @request.json \
> cache.json
CACHE_NAME=$(cat cache.json | grep '"name":' | cut -d '"' -f 4 | head -n 1)
curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"contents": [
{
"parts":[{
"text": "Please summarize this transcript"
}],
"role": "user"
},
],
"cachedContent": "'$CACHE_NAME'"
}'
PDFs
DOC_URL="https://sma.nasa.gov/SignificantIncidents/assets/a11_missionreport.pdf"
DISPLAY_NAME="A11_Mission_Report"
SYSTEM_INSTRUCTION="You are an expert at analyzing transcripts."
PROMPT="Please summarize this transcript"
MODEL="models/gemini-3-flash-preview"
TTL="300s"
# Download the PDF
wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}"
MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf")
NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo "file_uri: ${file_uri}"
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
# Create the cached content request
echo '{
"model": "'$MODEL'",
"contents":[
{
"parts":[
{"file_data": {"mime_type": "'$MIME_TYPE'", "file_uri": '$file_uri'}}
],
"role": "user"
}
],
"system_instruction": {
"parts": [
{
"text": "'$SYSTEM_INSTRUCTION'"
}
],
"role": "system"
},
"ttl": "'$TTL'"
}' > request.json
# Send the cached content request
curl -X POST "${BASE_URL}/v1beta/cachedContents?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d @request.json \
> cache.json
CACHE_NAME=$(cat cache.json | grep '"name":' | cut -d '"' -f 4 | head -n 1)
echo "CACHE_NAME: ${CACHE_NAME}"
# Send the generateContent request using the cached content
curl -X POST "${BASE_URL}/${MODEL}:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"contents": [
{
"parts":[{
"text": "'$PROMPT'"
}],
"role": "user"
}
],
"cachedContent": "'$CACHE_NAME'"
}' > response.json
cat response.json
echo jq ".candidates[].content.parts[].text" response.json
Listar caches
Não é possível recuperar ou visualizar o conteúdo armazenado em cache, mas você pode recuperar
metadados de cache (name, model, display_name, usage_metadata,
create_time, update_time e expire_time).
Python
Para listar metadados de todos os caches enviados, use CachedContent.list():
for cache in client.caches.list():
print(cache)
Para buscar os metadados de um objeto de cache, se você souber o nome dele, use get:
client.caches.get(name=name)
JavaScript
Para listar metadados de todos os caches enviados, use GoogleGenAI.caches.list():
console.log("My caches:");
const pager = await ai.caches.list({ config: { pageSize: 10 } });
let page = pager.page;
while (true) {
for (const c of page) {
console.log(" ", c.name);
}
if (!pager.hasNextPage()) break;
page = await pager.nextPage();
}
Go
O exemplo a seguir lista todos os caches.
caches, err := client.Caches.All(ctx)
if err != nil {
log.Fatal(err)
}
fmt.Println("Listing all caches:")
for _, item := range caches {
fmt.Println(" ", item.Name)
}
O exemplo a seguir lista caches usando um tamanho de página de 2.
page, err := client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2})
if err != nil {
log.Fatal(err)
}
pageIndex := 1
for {
fmt.Printf("Listing caches (page %d):\n", pageIndex)
for _, item := range page.Items {
fmt.Println(" ", item.Name)
}
if page.NextPageToken == "" {
break
}
page, err = page.Next(ctx)
if err == genai.ErrPageDone {
break
} else if err != nil {
return err
}
pageIndex++
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/cachedContents?key=$GEMINI_API_KEY"
Atualizar um cache
É possível definir um novo ttl ou expire_time para um cache. Não é possível mudar mais nada no cache.
Python
O exemplo a seguir mostra como atualizar o ttl de um cache usando
client.caches.update().
from google import genai
from google.genai import types
client.caches.update(
name = cache.name,
config = types.UpdateCachedContentConfig(
ttl='300s'
)
)
Para definir o horário de expiração, aceite um objeto datetime ou uma string de data e hora formatada em ISO (dt.isoformat(), como 2025-01-27T16:02:36.473528+00:00). Seu horário precisa incluir um fuso horário (datetime.utcnow() não anexa um fuso horário, datetime.now(datetime.timezone.utc) anexa).
from google import genai
from google.genai import types
import datetime
# You must use a time zone-aware time.
in10min = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(minutes=10)
client.caches.update(
name = cache.name,
config = types.UpdateCachedContentConfig(
expire_time=in10min
)
)
JavaScript
O exemplo a seguir mostra como atualizar o ttl de um cache usando
GoogleGenAI.caches.update().
const ttl = `${2 * 3600}s`; // 2 hours in seconds
const updatedCache = await ai.caches.update({
name: cache.name,
config: { ttl },
});
console.log("After update (TTL):", updatedCache);
Go
O exemplo a seguir mostra como atualizar o TTL de um cache.
// Update the TTL (2 hours).
cache, err = client.Caches.Update(ctx, cache.Name, &genai.UpdateCachedContentConfig{
TTL: 7200 * time.Second,
})
if err != nil {
log.Fatal(err)
}
fmt.Println("After update:")
fmt.Println(cache)
REST
O exemplo a seguir mostra como atualizar o ttl de um cache.
curl -X PATCH "https://generativelanguage.googleapis.com/v1beta/$CACHE_NAME?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{"ttl": "600s"}'
Excluir um cache
O serviço de cache oferece uma operação de exclusão para remover manualmente conteúdo do cache. O exemplo a seguir mostra como excluir um cache:
Python
client.caches.delete(cache.name)
JavaScript
await ai.caches.delete({ name: cache.name });
Go
_, err = client.Caches.Delete(ctx, cache.Name, &genai.DeleteCachedContentConfig{})
if err != nil {
log.Fatal(err)
}
fmt.Println("Cache deleted:", cache.Name)
REST
curl -X DELETE "https://generativelanguage.googleapis.com/v1beta/$CACHE_NAME?key=$GEMINI_API_KEY"
Cache explícito usando a biblioteca OpenAI
Se você estiver usando uma biblioteca da OpenAI, poderá ativar
o armazenamento em cache explícito usando a propriedade cached_content em
extra_body.
Quando usar o armazenamento em cache explícito
O armazenamento em cache de contexto é particularmente adequado para cenários em que um contexto inicial substancial é referenciado repetidamente por solicitações mais curtas. Use armazenamento em cache de contexto para casos de uso como estes:
- Chatbots com instruções do sistema abrangentes
- Análise repetitiva de arquivos de vídeo longos
- Consultas recorrentes em grandes conjuntos de documentos
- Análise frequente do repositório de código ou correção de bugs
Como o armazenamento em cache explícito reduz os custos
O armazenamento em cache de contexto é um recurso pago projetado para reduzir custos. O faturamento é baseado nos seguintes fatores:
- Contagem de tokens de cache: o número de tokens de entrada armazenados em cache, faturados com uma taxa reduzida quando incluído nos comandos subsequentes.
- Duração do armazenamento:o tempo de armazenamento dos tokens em cache (TTL), faturado com base na duração do TTL da contagem de tokens em cache. Não há limites mínimos ou máximos para o TTL.
- Outros fatores: outras cobranças se aplicam, como tokens de entrada não armazenados em cache e tokens de saída.
Para detalhes atualizados sobre preços, consulte a página de preços da API Gemini. Para saber como contar tokens, consulte o guia de tokens.
Outras considerações
Considere o seguinte ao usar o cache de contexto:
- A contagem mínima de tokens de entrada para o cache de contexto varia de acordo com o modelo. O máximo é igual ao máximo do modelo especificado. Para mais informações sobre como contar tokens, consulte o guia de tokens.
- O modelo não faz distinção entre tokens armazenados em cache e tokens de entrada regulares. O conteúdo armazenado em cache é um prefixo do comando.
- Não há limites de uso ou taxas especiais no cache de contexto. Os limites de taxa padrão para
GenerateContentse aplicam, e os limites de token incluem tokens armazenados em cache. - O número de tokens armazenados em cache é retornado no
usage_metadatadas operações "create", "get" e "list" do serviço de cache, e também emGenerateContentao usar o cache.