O armazenamento em cache de contexto

Em um fluxo de trabalho de IA típico, é possível transmitir os mesmos tokens de entrada várias vezes para um modelo. A API Gemini oferece dois mecanismos de cache diferentes:

  • Armazenamento em cache implícito (ativado automaticamente na maioria dos modelos do Gemini, sem garantia de economia de custos)
  • Armazenamento em cache explícito (pode ser ativado manualmente na maioria dos modelos, garantia de economia de custos)

O armazenamento em cache explícito é útil quando você quer garantir economia de custos, mas com algum trabalho extra do desenvolvedor.

Armazenamento em cache implícito

O armazenamento em cache implícito está ativado por padrão e disponível para a maioria dos modelos do Gemini. Transferimos automaticamente a economia de custos se sua solicitação atingir os caches. Não é necessário fazer nada para ativar esse recurso. Ela entra em vigor em 8 de maio de 2025. A contagem mínima de tokens de entrada para o cache de contexto está listada na tabela a seguir para cada modelo:

Modelo Limite mínimo de tokens
Pré-lançamento do Gemini 3 Flash 1024
Pré-lançamento do Gemini 3 Pro 4096
Gemini 2.5 Flash 1024
Gemini 2.5 Pro 4096

Para aumentar a chance de uma ocorrência implícita em cache:

  • Tente colocar conteúdos grandes e comuns no início do comando
  • Tente enviar solicitações com prefixos semelhantes em um curto período

Você pode conferir o número de tokens que foram hits de cache no campo usage_metadata do objeto de resposta.

Armazenamento em cache explícito

Com o recurso de armazenamento em cache explícito da API Gemini, é possível transmitir algum conteúdo para o modelo uma vez, armazenar em cache os tokens de entrada e consultar os tokens armazenados para solicitações subsequentes. Em determinados volumes, usar tokens em cache é mais barato do que transmitir o mesmo conjunto de tokens repetidamente.

Ao armazenar um conjunto de tokens em cache, você pode escolher por quanto tempo quer que o cache exista antes que os tokens sejam excluídos automaticamente. Essa duração do armazenamento em cache é chamada de time to live (TTL). Se não for definido, o TTL será de 1 hora. O custo do armazenamento em cache depende do tamanho do token de entrada e de quanto tempo você quer que os tokens persistam.

Nesta seção, presumimos que você instalou um SDK do Gemini (ou tem o curl instalado) e configurou uma chave de API, conforme mostrado no início rápido.

Gerar conteúdo usando um cache

Python

O exemplo a seguir mostra como gerar conteúdo usando uma instrução do sistema em cache e um arquivo de vídeo.

Vídeos

import os
import pathlib
import requests
import time

from google import genai
from google.genai import types

client = genai.Client()

# Download a test video file and save it locally
url = 'https://storage.googleapis.com/generativeai-downloads/data/SherlockJr._10min.mp4'
path_to_video_file = pathlib.Path('SherlockJr._10min.mp4')
if not path_to_video_file.exists():
    path_to_video_file.write_bytes(requests.get(url).content)

# Upload the video using the Files API
video_file = client.files.upload(file=path_to_video_file)

# Wait for the file to finish processing
while video_file.state.name == 'PROCESSING':
    time.sleep(2.5)
    video_file = client.files.get(name=video_file.name)

print(f'Video processing complete: {video_file.uri}')

model='models/gemini-3-flash-preview'

# Create a cache with a 5 minute TTL (300 seconds)
cache = client.caches.create(
    model=model,
    config=types.CreateCachedContentConfig(
        display_name='sherlock jr movie', # used to identify the cache
        system_instruction=(
            'You are an expert video analyzer, and your job is to answer '
            'the user\'s query based on the video file you have access to.'
        ),
        contents=[video_file],
        ttl="300s",
    )
)

response = client.models.generate_content(
    model = model,
    contents= (
    'Introduce different characters in the movie by describing '
    'their personality, looks, and names. Also list the timestamps '
    'they were introduced for the first time.'),
    config=types.GenerateContentConfig(cached_content=cache.name)
)

print(response.usage_metadata)

print(response.text)

PDFs

from google import genai
from google.genai import types
import io
import httpx

client = genai.Client()

long_context_pdf_path = "https://sma.nasa.gov/SignificantIncidents/assets/a11_missionreport.pdf"

# Retrieve and upload the PDF using the File API
doc_io = io.BytesIO(httpx.get(long_context_pdf_path).content)

document = client.files.upload(
  file=doc_io,
  config=dict(mime_type='application/pdf')
)

model_name = "gemini-3-flash-preview"
system_instruction = "You are an expert analyzing transcripts."

# Create a cached content object
cache = client.caches.create(
    model=model_name,
    config=types.CreateCachedContentConfig(
      system_instruction=system_instruction,
      contents=[document],
    )
)

print(f'{cache=}')

response = client.models.generate_content(
  model=model_name,
  contents="Please summarize this transcript",
  config=types.GenerateContentConfig(
    cached_content=cache.name
  ))

print(f'{response.usage_metadata=}')

print('\n\n', response.text)

JavaScript

O exemplo a seguir mostra como gerar conteúdo usando uma instrução de sistema em cache e um arquivo de texto.

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const doc = await ai.files.upload({
    file: "path/to/file.txt",
    config: { mimeType: "text/plain" },
  });
  console.log("Uploaded file name:", doc.name);

  const modelName = "gemini-3-flash-preview";
  const cache = await ai.caches.create({
    model: modelName,
    config: {
      contents: createUserContent(createPartFromUri(doc.uri, doc.mimeType)),
      systemInstruction: "You are an expert analyzing transcripts.",
    },
  });
  console.log("Cache created:", cache);

  const response = await ai.models.generateContent({
    model: modelName,
    contents: "Please summarize this transcript",
    config: { cachedContent: cache.name },
  });
  console.log("Response text:", response.text);
}

await main();

Go

O exemplo a seguir mostra como gerar conteúdo usando um cache.

package main

import (
    "context"
    "fmt"
    "log"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, &genai.ClientConfig{
        APIKey: "GOOGLE_API_KEY",
        Backend: genai.BackendGeminiAPI,
    })
    if err != nil {
        log.Fatal(err)
    }

    modelName := "gemini-3-flash-preview"
    document, err := client.Files.UploadFromPath(
        ctx,
        "media/a11.txt",
        &genai.UploadFileConfig{
          MIMEType: "text/plain",
        },
    )
    if err != nil {
        log.Fatal(err)
    }
    parts := []*genai.Part{
        genai.NewPartFromURI(document.URI, document.MIMEType),
    }
    contents := []*genai.Content{
        genai.NewContentFromParts(parts, genai.RoleUser),
    }
    cache, err := client.Caches.Create(ctx, modelName, &genai.CreateCachedContentConfig{
        Contents: contents,
        SystemInstruction: genai.NewContentFromText(
          "You are an expert analyzing transcripts.", genai.RoleUser,
        ),
    })
    if err != nil {
        log.Fatal(err)
    }
    fmt.Println("Cache created:")
    fmt.Println(cache)

    // Use the cache for generating content.
    response, err := client.Models.GenerateContent(
        ctx,
        modelName,
        genai.Text("Please summarize this transcript"),
        &genai.GenerateContentConfig{
          CachedContent: cache.Name,
        },
    )
    if err != nil {
        log.Fatal(err)
    }
    printResponse(response) // helper for printing response parts
}

REST

O exemplo a seguir mostra como criar um cache e usá-lo para gerar conteúdo.

Vídeos

wget https://storage.googleapis.com/generativeai-downloads/data/a11.txt
echo '{
  "model": "models/gemini-3-flash-preview",
  "contents":[
    {
      "parts":[
        {
          "inline_data": {
            "mime_type":"text/plain",
            "data": "'$(base64 $B64FLAGS a11.txt)'"
          }
        }
      ],
    "role": "user"
    }
  ],
  "systemInstruction": {
    "parts": [
      {
        "text": "You are an expert at analyzing transcripts."
      }
    ]
  },
  "ttl": "300s"
}' > request.json

curl -X POST "https://generativelanguage.googleapis.com/v1beta/cachedContents?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d @request.json \
> cache.json

CACHE_NAME=$(cat cache.json | grep '"name":' | cut -d '"' -f 4 | head -n 1)

curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
      "contents": [
        {
          "parts":[{
            "text": "Please summarize this transcript"
          }],
          "role": "user"
        },
      ],
      "cachedContent": "'$CACHE_NAME'"
    }'

PDFs

DOC_URL="https://sma.nasa.gov/SignificantIncidents/assets/a11_missionreport.pdf"
DISPLAY_NAME="A11_Mission_Report"
SYSTEM_INSTRUCTION="You are an expert at analyzing transcripts."
PROMPT="Please summarize this transcript"
MODEL="models/gemini-3-flash-preview"
TTL="300s"

# Download the PDF
wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}"

MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf")
NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf")

echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo "file_uri: ${file_uri}"

# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"

# Create the cached content request
echo '{
  "model": "'$MODEL'",
  "contents":[
    {
      "parts":[
        {"file_data": {"mime_type": "'$MIME_TYPE'", "file_uri": '$file_uri'}}
      ],
    "role": "user"
    }
  ],
  "system_instruction": {
    "parts": [
      {
        "text": "'$SYSTEM_INSTRUCTION'"
      }
    ],
    "role": "system"
  },
  "ttl": "'$TTL'"
}' > request.json

# Send the cached content request
curl -X POST "${BASE_URL}/v1beta/cachedContents?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d @request.json \
> cache.json

CACHE_NAME=$(cat cache.json | grep '"name":' | cut -d '"' -f 4 | head -n 1)
echo "CACHE_NAME: ${CACHE_NAME}"
# Send the generateContent request using the cached content
curl -X POST "${BASE_URL}/${MODEL}:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
      "contents": [
        {
          "parts":[{
            "text": "'$PROMPT'"
          }],
          "role": "user"
        }
      ],
      "cachedContent": "'$CACHE_NAME'"
    }' > response.json

cat response.json

echo jq ".candidates[].content.parts[].text" response.json

Listar caches

Não é possível recuperar ou visualizar o conteúdo armazenado em cache, mas você pode recuperar metadados de cache (name, model, display_name, usage_metadata, create_time, update_time e expire_time).

Python

Para listar metadados de todos os caches enviados, use CachedContent.list():

for cache in client.caches.list():
  print(cache)

Para buscar os metadados de um objeto de cache, se você souber o nome dele, use get:

client.caches.get(name=name)

JavaScript

Para listar metadados de todos os caches enviados, use GoogleGenAI.caches.list():

console.log("My caches:");
const pager = await ai.caches.list({ config: { pageSize: 10 } });
let page = pager.page;
while (true) {
  for (const c of page) {
    console.log("    ", c.name);
  }
  if (!pager.hasNextPage()) break;
  page = await pager.nextPage();
}

Go

O exemplo a seguir lista todos os caches.

caches, err := client.Caches.All(ctx)
if err != nil {
    log.Fatal(err)
}
fmt.Println("Listing all caches:")
for _, item := range caches {
    fmt.Println("   ", item.Name)
}

O exemplo a seguir lista caches usando um tamanho de página de 2.

page, err := client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2})
if err != nil {
    log.Fatal(err)
}

pageIndex := 1
for {
    fmt.Printf("Listing caches (page %d):\n", pageIndex)
    for _, item := range page.Items {
        fmt.Println("   ", item.Name)
    }
    if page.NextPageToken == "" {
        break
    }
    page, err = page.Next(ctx)
    if err == genai.ErrPageDone {
        break
    } else if err != nil {
        return err
    }
    pageIndex++
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/cachedContents?key=$GEMINI_API_KEY"

Atualizar um cache

É possível definir um novo ttl ou expire_time para um cache. Não é possível mudar mais nada no cache.

Python

O exemplo a seguir mostra como atualizar o ttl de um cache usando client.caches.update().

from google import genai
from google.genai import types

client.caches.update(
  name = cache.name,
  config  = types.UpdateCachedContentConfig(
      ttl='300s'
  )
)

Para definir o horário de expiração, aceite um objeto datetime ou uma string de data e hora formatada em ISO (dt.isoformat(), como 2025-01-27T16:02:36.473528+00:00). Seu horário precisa incluir um fuso horário (datetime.utcnow() não anexa um fuso horário, datetime.now(datetime.timezone.utc) anexa).

from google import genai
from google.genai import types
import datetime

# You must use a time zone-aware time.
in10min = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(minutes=10)

client.caches.update(
  name = cache.name,
  config  = types.UpdateCachedContentConfig(
      expire_time=in10min
  )
)

JavaScript

O exemplo a seguir mostra como atualizar o ttl de um cache usando GoogleGenAI.caches.update().

const ttl = `${2 * 3600}s`; // 2 hours in seconds
const updatedCache = await ai.caches.update({
  name: cache.name,
  config: { ttl },
});
console.log("After update (TTL):", updatedCache);

Go

O exemplo a seguir mostra como atualizar o TTL de um cache.

// Update the TTL (2 hours).
cache, err = client.Caches.Update(ctx, cache.Name, &genai.UpdateCachedContentConfig{
    TTL: 7200 * time.Second,
})
if err != nil {
    log.Fatal(err)
}
fmt.Println("After update:")
fmt.Println(cache)

REST

O exemplo a seguir mostra como atualizar o ttl de um cache.

curl -X PATCH "https://generativelanguage.googleapis.com/v1beta/$CACHE_NAME?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{"ttl": "600s"}'

Excluir um cache

O serviço de cache oferece uma operação de exclusão para remover manualmente conteúdo do cache. O exemplo a seguir mostra como excluir um cache:

Python

client.caches.delete(cache.name)

JavaScript

await ai.caches.delete({ name: cache.name });

Go

_, err = client.Caches.Delete(ctx, cache.Name, &genai.DeleteCachedContentConfig{})
if err != nil {
    log.Fatal(err)
}
fmt.Println("Cache deleted:", cache.Name)

REST

curl -X DELETE "https://generativelanguage.googleapis.com/v1beta/$CACHE_NAME?key=$GEMINI_API_KEY"

Cache explícito usando a biblioteca OpenAI

Se você estiver usando uma biblioteca da OpenAI, poderá ativar o armazenamento em cache explícito usando a propriedade cached_content em extra_body.

Quando usar o armazenamento em cache explícito

O armazenamento em cache de contexto é particularmente adequado para cenários em que um contexto inicial substancial é referenciado repetidamente por solicitações mais curtas. Use armazenamento em cache de contexto para casos de uso como estes:

  • Chatbots com instruções do sistema abrangentes
  • Análise repetitiva de arquivos de vídeo longos
  • Consultas recorrentes em grandes conjuntos de documentos
  • Análise frequente do repositório de código ou correção de bugs

Como o armazenamento em cache explícito reduz os custos

O armazenamento em cache de contexto é um recurso pago projetado para reduzir custos. O faturamento é baseado nos seguintes fatores:

  1. Contagem de tokens de cache: o número de tokens de entrada armazenados em cache, faturados com uma taxa reduzida quando incluído nos comandos subsequentes.
  2. Duração do armazenamento:o tempo de armazenamento dos tokens em cache (TTL), faturado com base na duração do TTL da contagem de tokens em cache. Não há limites mínimos ou máximos para o TTL.
  3. Outros fatores: outras cobranças se aplicam, como tokens de entrada não armazenados em cache e tokens de saída.

Para detalhes atualizados sobre preços, consulte a página de preços da API Gemini. Para saber como contar tokens, consulte o guia de tokens.

Outras considerações

Considere o seguinte ao usar o cache de contexto:

  • A contagem mínima de tokens de entrada para o cache de contexto varia de acordo com o modelo. O máximo é igual ao máximo do modelo especificado. Para mais informações sobre como contar tokens, consulte o guia de tokens.
  • O modelo não faz distinção entre tokens armazenados em cache e tokens de entrada regulares. O conteúdo armazenado em cache é um prefixo do comando.
  • Não há limites de uso ou taxas especiais no cache de contexto. Os limites de taxa padrão para GenerateContent se aplicam, e os limites de token incluem tokens armazenados em cache.
  • O número de tokens armazenados em cache é retornado no usage_metadata das operações "create", "get" e "list" do serviço de cache, e também em GenerateContent ao usar o cache.