Gemini API มีเครื่องมือการเรียกใช้โค้ดที่ช่วยให้โมเดลสามารถ สร้างและรันโค้ด Python ได้ จากนั้นโมเดลจะเรียนรู้ซ้ำๆ จาก ผลการเรียกใช้โค้ดจนกว่าจะได้เอาต์พุตสุดท้าย คุณสามารถใช้การ ดำเนินการโค้ดเพื่อสร้างแอปพลิเคชันที่ได้รับประโยชน์จากการให้เหตุผลตามโค้ด เช่น คุณสามารถใช้การดำเนินการกับโค้ดเพื่อแก้สมการหรือประมวลผลข้อความ นอกจากนี้ คุณยังใช้ไลบรารีที่รวมอยู่ในการดำเนินการโค้ด เพื่อทำงานที่เฉพาะเจาะจงมากขึ้นได้ด้วย
Gemini สามารถเรียกใช้โค้ดใน Python เท่านั้น คุณยังคงขอให้ Gemini สร้างโค้ดในภาษาอื่นได้ แต่โมเดลจะใช้เครื่องมือ การดำเนินการโค้ดเพื่อรันโค้ดนั้นไม่ได้
เปิดใช้การดำเนินการโค้ด
หากต้องการเปิดใช้การเรียกใช้โค้ด ให้กำหนดค่าเครื่องมือเรียกใช้โค้ดในโมเดล ซึ่งจะช่วยให้โมเดลสร้างและเรียกใช้โค้ดได้
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents="What is the sum of the first 50 prime numbers? "
"Generate and run code for the calculation, and make sure you get all 50.",
config=types.GenerateContentConfig(
tools=[types.Tool(code_execution=types.ToolCodeExecution)]
),
)
for part in response.candidates[0].content.parts:
if part.text is not None:
print(part.text)
if part.executable_code is not None:
print(part.executable_code.code)
if part.code_execution_result is not None:
print(part.code_execution_result.output)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({});
let response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: [
"What is the sum of the first 50 prime numbers? " +
"Generate and run code for the calculation, and make sure you get all 50.",
],
config: {
tools: [{ codeExecution: {} }],
},
});
const parts = response?.candidates?.[0]?.content?.parts || [];
parts.forEach((part) => {
if (part.text) {
console.log(part.text);
}
if (part.executableCode && part.executableCode.code) {
console.log(part.executableCode.code);
}
if (part.codeExecutionResult && part.codeExecutionResult.output) {
console.log(part.codeExecutionResult.output);
}
});
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
config := &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{CodeExecution: &genai.ToolCodeExecution{}},
},
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
genai.Text("What is the sum of the first 50 prime numbers? " +
"Generate and run code for the calculation, and make sure you get all 50."),
config,
)
fmt.Println(result.Text())
fmt.Println(result.ExecutableCode())
fmt.Println(result.CodeExecutionResult())
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d ' {"tools": [{"code_execution": {}}],
"contents": {
"parts":
{
"text": "What is the sum of the first 50 prime numbers? Generate and run code for the calculation, and make sure you get all 50."
}
},
}'
เอาต์พุตอาจมีลักษณะดังต่อไปนี้ ซึ่งได้รับการจัดรูปแบบเพื่อให้อ่านง่าย
Okay, I need to calculate the sum of the first 50 prime numbers. Here's how I'll
approach this:
1. **Generate Prime Numbers:** I'll use an iterative method to find prime
numbers. I'll start with 2 and check if each subsequent number is divisible
by any number between 2 and its square root. If not, it's a prime.
2. **Store Primes:** I'll store the prime numbers in a list until I have 50 of
them.
3. **Calculate the Sum:** Finally, I'll sum the prime numbers in the list.
Here's the Python code to do this:
def is_prime(n):
"""Efficiently checks if a number is prime."""
if n <= 1:
return False
if n <= 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
i = 5
while i * i <= n:
if n % i == 0 or n % (i + 2) == 0:
return False
i += 6
return True
primes = []
num = 2
while len(primes) < 50:
if is_prime(num):
primes.append(num)
num += 1
sum_of_primes = sum(primes)
print(f'{primes=}')
print(f'{sum_of_primes=}')
primes=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229]
sum_of_primes=5117
The sum of the first 50 prime numbers is 5117.
เอาต์พุตนี้รวมส่วนเนื้อหาหลายส่วนที่โมเดลแสดงผลเมื่อใช้ การดำเนินการโค้ด
text: ข้อความในบรรทัดที่โมเดลสร้างขึ้นexecutableCode: โค้ดที่โมเดลสร้างขึ้นเพื่อเรียกใช้codeExecutionResult: ผลลัพธ์ของโค้ดที่เรียกใช้งานได้
รูปแบบการตั้งชื่อสำหรับส่วนต่างๆ เหล่านี้จะแตกต่างกันไปตามภาษาโปรแกรม
การดำเนินการโค้ดด้วยรูปภาพ (Gemini 3)
ตอนนี้โมเดล Gemini 3 Flash สามารถเขียนและรันโค้ด Python เพื่อจัดการและตรวจสอบรูปภาพได้อย่างมีประสิทธิภาพ ความสามารถนี้เรียกว่าการคิดเชิงภาพ
กรณีการใช้งาน
- ซูมและตรวจสอบ: โมเดลจะตรวจหาโดยนัยเมื่อรายละเอียดมีขนาดเล็กเกินไป (เช่น การอ่านเกจที่อยู่ไกล) และเขียนโค้ดเพื่อครอบตัดและตรวจสอบพื้นที่อีกครั้ง ที่ความละเอียดสูงขึ้น
- คณิตศาสตร์ภาพ: โมเดลสามารถทำการคำนวณหลายขั้นตอนโดยใช้โค้ด (เช่น การบวกรายการในใบเสร็จ)
- การอธิบายประกอบรูปภาพ: โมเดลสามารถอธิบายประกอบรูปภาพเพื่อตอบคำถามได้ เช่น การวาดลูกศรเพื่อแสดงความสัมพันธ์
การเปิดใช้การคิดเชิงภาพ
Gemini 3 Flash รองรับการคิดเชิงภาพอย่างเป็นทางการ คุณเปิดใช้งานลักษณะการทำงานนี้ได้โดยเปิดใช้ทั้งเครื่องมือเรียกใช้โค้ดและการคิด
Python
from google import genai
from google.genai import types
import requests
from PIL import Image
import io
image_path = "https://goo.gle/instrument-img"
image_bytes = requests.get(image_path).content
image = types.Part.from_bytes(
data=image_bytes, mime_type="image/jpeg"
)
# Ensure you have your API key set
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-3-flash-preview",
contents=[image, "Zoom into the expression pedals and tell me how many pedals are there?"],
config=types.GenerateContentConfig(
tools=[types.Tool(code_execution=types.ToolCodeExecution)]
),
)
for part in response.candidates[0].content.parts:
if part.text is not None:
print(part.text)
if part.executable_code is not None:
print(part.executable_code.code)
if part.code_execution_result is not None:
print(part.code_execution_result.output)
if part.as_image() is not None:
# display() is a standard function in Jupyter/Colab notebooks
display(Image.open(io.BytesIO(part.as_image().image_bytes)))
JavaScript
async function main() {
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
// 1. Prepare Image Data
const imageUrl = "https://goo.gle/instrument-img";
const response = await fetch(imageUrl);
const imageArrayBuffer = await response.arrayBuffer();
const base64ImageData = Buffer.from(imageArrayBuffer).toString('base64');
// 2. Call the API with Code Execution enabled
const result = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: [
{
inlineData: {
mimeType: 'image/jpeg',
data: base64ImageData,
},
},
{ text: "Zoom into the expression pedals and tell me how many pedals are there?" }
],
config: {
tools: [{ codeExecution: {} }],
},
});
// 3. Process the response (Text, Code, and Execution Results)
const candidates = result.response.candidates;
if (candidates && candidates[0].content.parts) {
for (const part of candidates[0].content.parts) {
if (part.text) {
console.log("Text:", part.text);
}
if (part.executableCode) {
console.log(`\nGenerated Code (${part.executableCode.language}):\n`, part.executableCode.code);
}
if (part.codeExecutionResult) {
console.log(`\nExecution Output (${part.codeExecutionResult.outcome}):\n`, part.codeExecutionResult.output);
}
}
}
}
main();
Go
package main
import (
"context"
"fmt"
"io"
"log"
"net/http"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
// Initialize Client (Reads GEMINI_API_KEY from env)
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
// 1. Download the image
imageResp, err := http.Get("https://goo.gle/instrument-img")
if err != nil {
log.Fatal(err)
}
defer imageResp.Body.Close()
imageBytes, err := io.ReadAll(imageResp.Body)
if err != nil {
log.Fatal(err)
}
// 2. Configure Code Execution Tool
config := &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{CodeExecution: &genai.ToolCodeExecution{}},
},
}
// 3. Generate Content
result, err := client.Models.GenerateContent(
ctx,
"gemini-3-flash-preview",
[]*genai.Content{
{
Parts: []*genai.Part{
{InlineData: &genai.Blob{MIMEType: "image/jpeg", Data: imageBytes}},
{Text: "Zoom into the expression pedals and tell me how many pedals are there?"},
},
Role: "user",
},
},
config,
)
if err != nil {
log.Fatal(err)
}
// 4. Parse Response (Text, Code, Output)
for _, cand := range result.Candidates {
for _, part := range cand.Content.Parts {
if part.Text != "" {
fmt.Println("Text:", part.Text)
}
if part.ExecutableCode != nil {
fmt.Printf("\nGenerated Code (%s):\n%s\n",
part.ExecutableCode.Language,
part.ExecutableCode.Code)
}
if part.CodeExecutionResult != nil {
fmt.Printf("\nExecution Output (%s):\n%s\n",
part.CodeExecutionResult.Outcome,
part.CodeExecutionResult.Output)
}
}
}
}
REST
IMG_URL="https://goo.gle/instrument-img"
MODEL="gemini-3-flash-preview"
MIME_TYPE=$(curl -sIL "$IMG_URL" | grep -i '^content-type:' | awk -F ': ' '{print $2}' | sed 's/\r$//' | head -n 1)
if [[ -z "$MIME_TYPE" || ! "$MIME_TYPE" == image/* ]]; then
MIME_TYPE="image/jpeg"
fi
if [[ "$(uname)" == "Darwin" ]]; then
IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -b 0)
elif [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
IMAGE_B64=$(curl -sL "$IMG_URL" | base64)
else
IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -w0)
fi
curl "https://generativelanguage.googleapis.com/v1beta/models/$MODEL:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{
"inline_data": {
"mime_type":"'"$MIME_TYPE"'",
"data": "'"$IMAGE_B64"'"
}
},
{"text": "Zoom into the expression pedals and tell me how many pedals are there?"}
]
}],
"tools": [
{
"code_execution": {}
}
]
}'
ใช้การรันโค้ดในแชท
นอกจากนี้ คุณยังใช้การดำเนินการโค้ดเป็นส่วนหนึ่งของการแชทได้ด้วย
Python
from google import genai
from google.genai import types
client = genai.Client()
chat = client.chats.create(
model="gemini-2.5-flash",
config=types.GenerateContentConfig(
tools=[types.Tool(code_execution=types.ToolCodeExecution)]
),
)
response = chat.send_message("I have a math question for you.")
print(response.text)
response = chat.send_message(
"What is the sum of the first 50 prime numbers? "
"Generate and run code for the calculation, and make sure you get all 50."
)
for part in response.candidates[0].content.parts:
if part.text is not None:
print(part.text)
if part.executable_code is not None:
print(part.executable_code.code)
if part.code_execution_result is not None:
print(part.code_execution_result.output)
JavaScript
import {GoogleGenAI} from "@google/genai";
const ai = new GoogleGenAI({});
const chat = ai.chats.create({
model: "gemini-2.5-flash",
history: [
{
role: "user",
parts: [{ text: "I have a math question for you:" }],
},
{
role: "model",
parts: [{ text: "Great! I'm ready for your math question. Please ask away." }],
},
],
config: {
tools: [{codeExecution:{}}],
}
});
const response = await chat.sendMessage({
message: "What is the sum of the first 50 prime numbers? " +
"Generate and run code for the calculation, and make sure you get all 50."
});
console.log("Chat response:", response.text);
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
config := &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{CodeExecution: &genai.ToolCodeExecution{}},
},
}
chat, _ := client.Chats.Create(
ctx,
"gemini-2.5-flash",
config,
nil,
)
result, _ := chat.SendMessage(
ctx,
genai.Part{Text: "What is the sum of the first 50 prime numbers? " +
"Generate and run code for the calculation, and " +
"make sure you get all 50.",
},
)
fmt.Println(result.Text())
fmt.Println(result.ExecutableCode())
fmt.Println(result.CodeExecutionResult())
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{"tools": [{"code_execution": {}}],
"contents": [
{
"role": "user",
"parts": [{
"text": "Can you print \"Hello world!\"?"
}]
},{
"role": "model",
"parts": [
{
"text": ""
},
{
"executable_code": {
"language": "PYTHON",
"code": "\nprint(\"hello world!\")\n"
}
},
{
"code_execution_result": {
"outcome": "OUTCOME_OK",
"output": "hello world!\n"
}
},
{
"text": "I have printed \"hello world!\" using the provided python code block. \n"
}
],
},{
"role": "user",
"parts": [{
"text": "What is the sum of the first 50 prime numbers? Generate and run code for the calculation, and make sure you get all 50."
}]
}
]
}'
อินพุต/เอาต์พุต (I/O)
เริ่มตั้งแต่ Gemini 2.0 Flash การดำเนินการโค้ดจะรองรับอินพุตไฟล์และเอาต์พุตกราฟ ความสามารถในการป้อนข้อมูลและเอาต์พุตเหล่านี้ช่วยให้คุณอัปโหลดไฟล์ CSV และไฟล์ข้อความ ถามคำถามเกี่ยวกับไฟล์ และให้ระบบสร้างกราฟ Matplotlib เป็นส่วนหนึ่งของคำตอบได้ ระบบจะแสดงไฟล์เอาต์พุตเป็นรูปภาพในบรรทัดในคำตอบ
ราคา I/O
เมื่อใช้ I/O การเรียกใช้โค้ด ระบบจะเรียกเก็บเงินจากโทเค็นอินพุตและโทเค็นเอาต์พุต
โทเค็นอินพุต:
- พรอมต์ของผู้ใช้
โทเค็นเอาต์พุต:
- โค้ดที่โมเดลสร้างขึ้น
- เอาต์พุตการรันโค้ดในสภาพแวดล้อมของโค้ด
- โทเค็นการคิด
- ข้อมูลสรุปที่โมเดลสร้างขึ้น
รายละเอียด I/O
เมื่อทำงานกับ I/O การดำเนินการโค้ด โปรดทราบรายละเอียดทางเทคนิคต่อไปนี้
- รันไทม์สูงสุดของสภาพแวดล้อมโค้ดคือ 30 วินาที
- หากสภาพแวดล้อมของโค้ดสร้างข้อผิดพลาด โมเดลอาจตัดสินใจ สร้างเอาต์พุตโค้ดใหม่ ซึ่งอาจเกิดขึ้นได้สูงสุด 5 ครั้ง
- ขนาดไฟล์อินพุตสูงสุดจะจำกัดตามหน้าต่างโทเค็นของโมเดล ใน AI Studio เมื่อใช้ Gemini Flash 2.0 ขนาดไฟล์อินพุตสูงสุดคือ 1 ล้านโทเค็น (ประมาณ 2 MB สำหรับไฟล์ข้อความของอินพุตประเภทที่รองรับ) หากคุณอัปโหลดไฟล์ที่มีขนาดใหญ่เกินไป AI Studio จะไม่อนุญาตให้คุณส่งไฟล์
- การดำเนินการโค้ดจะทำงานได้ดีที่สุดกับไฟล์ข้อความและ CSV
- ส่งไฟล์อินพุตใน
part.inlineDataหรือpart.fileData(อัปโหลดผ่าน Files API) และระบบจะส่งคืนไฟล์เอาต์พุตเป็นpart.inlineDataเสมอ
| เลี้ยวเดียว | สองทาง (Multimodal Live API) | |
|---|---|---|
| รุ่นที่รองรับ | โมเดล Gemini 2.0 และ 2.5 ทั้งหมด | เฉพาะโมเดลทดลองของ Flash |
| ประเภทไฟล์อินพุตที่รองรับ | .png, .jpeg, .csv, .xml, .cpp, .java, .py, .js, .ts | .png, .jpeg, .csv, .xml, .cpp, .java, .py, .js, .ts |
| รองรับไลบรารีการพล็อต | Matplotlib, seaborn | Matplotlib, seaborn |
| การใช้เครื่องมืออเนกประสงค์ | ได้ (การรันโค้ด + การอ้างอิงเท่านั้น) | ใช่ |
การเรียกเก็บเงิน
โดยไม่มีค่าใช้จ่ายเพิ่มเติมสำหรับการเปิดใช้การดำเนินการโค้ดจาก Gemini API ระบบจะเรียกเก็บเงินจากคุณตามอัตราปัจจุบันของโทเค็นอินพุตและเอาต์พุตโดยอิงตาม โมเดล Gemini ที่คุณใช้
สิ่งอื่นๆ ที่ควรทราบเกี่ยวกับการเรียกเก็บเงินสำหรับการดำเนินการโค้ดมีดังนี้
- ระบบจะเรียกเก็บเงินจากคุณเพียงครั้งเดียวสำหรับโทเค็นอินพุตที่คุณส่งไปยังโมเดล และจะเรียกเก็บเงินจากคุณสำหรับโทเค็นเอาต์พุตสุดท้ายที่โมเดลส่งกลับมาให้คุณ
- ระบบจะนับโทเค็นที่แสดงโค้ดที่สร้างขึ้นเป็นโทเค็นเอาต์พุต โค้ดที่สร้างขึ้น อาจมีข้อความและเอาต์พุตหลายรูปแบบ เช่น รูปภาพ
- ผลการดำเนินการโค้ดจะนับเป็นโทเค็นเอาต์พุตด้วย
รูปแบบการเรียกเก็บเงินแสดงในแผนภาพต่อไปนี้

- ระบบจะเรียกเก็บเงินจากคุณตามอัตราปัจจุบันของโทเค็นอินพุตและเอาต์พุตโดยอิงตาม โมเดล Gemini ที่คุณใช้
- หาก Gemini ใช้การเรียกใช้โค้ดเมื่อสร้างคำตอบ ระบบจะติดป้ายกำกับพรอมต์ต้นฉบับ โค้ดที่สร้างขึ้น และผลลัพธ์ของโค้ดที่เรียกใช้เป็นโทเค็นระดับกลาง และจะเรียกเก็บเงินเป็นโทเค็นอินพุต
- จากนั้น Gemini จะสร้างข้อมูลสรุปและส่งคืนโค้ดที่สร้างขึ้น ผลลัพธ์ของโค้ดที่เรียกใช้ และข้อมูลสรุปสุดท้าย ระบบจะเรียกเก็บเงินสำหรับโทเค็นเหล่านี้เป็นโทเค็นเอาต์พุต
- Gemini API จะรวมจำนวนโทเค็นระดับกลางไว้ในการตอบกลับจาก API เพื่อให้คุณทราบว่าเหตุใดจึงได้รับโทเค็นอินพุตเพิ่มเติมจากพรอมต์เริ่มต้น
ข้อจำกัด
- โมเดลจะสร้างและเรียกใช้โค้ดได้เท่านั้น แต่จะคืนค่าอาร์ติแฟกต์อื่นๆ เช่น ไฟล์สื่อ ไม่ได้
- ในบางกรณี การเปิดใช้การดำเนินการโค้ดอาจทำให้เกิดการถดถอยในด้านอื่นๆ ของเอาต์พุตโมเดล (เช่น การเขียนเรื่องราว)
- ความสามารถของโมเดลต่างๆ ในการใช้การดำเนินการโค้ดให้สำเร็จนั้นแตกต่างกัน
ชุดค่าผสมของเครื่องมือที่รองรับ
คุณสามารถใช้เครื่องมือการดำเนินการโค้ดร่วมกับการอ้างอิงจาก Google Search เพื่อ ขับเคลื่อน Use Case ที่ซับซ้อนยิ่งขึ้น
ไลบรารีที่รองรับ
สภาพแวดล้อมการเรียกใช้โค้ดมีไลบรารีต่อไปนี้
- attrs
- หมากรุก
- contourpy
- fpdf
- geopandas
- imageio
- jinja2
- joblib
- jsonschema
- jsonschema-specifications
- lxml
- matplotlib
- mpmath
- numpy
- opencv-python
- openpyxl
- การสร้างแพ็กเกจ
- แพนด้า
- หมอน
- protobuf
- pylatex
- pyparsing
- PyPDF2
- python-dateutil
- python-docx
- python-pptx
- reportlab
- scikit-learn
- scipy
- seaborn
- หก
- striprtf
- sympy
- จัดตาราง
- tensorflow
- toolz
- xlrd
คุณติดตั้งไลบรารีของคุณเองไม่ได้
ขั้นตอนถัดไป
- ลองใช้ Colab การดำเนินการโค้ด
- ดูข้อมูลเกี่ยวกับเครื่องมืออื่นๆ ของ Gemini API