Wywołanie funkcji ułatwia pobieranie danych wyjściowych z uporządkowanych danych modeli generatywnych. Następnie możesz używać tych danych do wywoływania innych interfejsów API i zwracania odpowiednich danych odpowiedzi do modelu. Innymi słowy, wywołanie funkcji pomaga Łączysz modele generatywne z systemami zewnętrznymi, aby wygenerowane treści zawiera najbardziej aktualne i dokładne informacje.
Możesz przekazywać modelom Gemini opisy funkcji. Są to funkcje napisane w języku aplikacji (czyli nie są to funkcje Google Cloud Functions). Model może poprosić o wywołanie funkcji i odesłanie wyniku, aby pomóc w obróbce zapytania.
Zapoznaj się z Wprowadzenie do wywoływania funkcji więcej.
Przykładowy interfejs API do sterowania oświetleniem
Wyobraź sobie, że masz podstawowy system sterowania oświetleniem i programowanie interfejsu (API) i chcesz umożliwić użytkownikom sterowanie oświetleniem za pomocą prostego żądań tekstowych. Możesz skorzystać z funkcji wywoływania funkcji, aby interpretować oświetlenie zmieniać żądania użytkowników i przekształcać je w wywołania interfejsu API w celu ustawienia oświetlenia . Ten hipotetyczny system sterowania oświetleniem umożliwia kontrolowanie jasności światła i jego temperatury barwowej, zdefiniowanych jako dwa oddzielne parametry:
Parametr | Typ | Wymagane | Opis |
---|---|---|---|
brightness |
liczba | tak | Poziom światła od 0 do 100. Zero oznacza wyłączone, a 100 – pełną jasność. |
colorTemperature |
ciąg znaków | tak | Temperatura kolorów oświetlenia, która może wynosić daylight , cool lub warm . |
Dla uproszczenia ten wymyślony system oświetleniowy ma tylko jedno światło, dzięki czemu użytkownik nie musi określać pomieszczenia ani lokalizacji. Oto przykład żądania JSON, które możesz wysłać do interfejsu Lighting Control API, aby zmienić poziom światła do 50% przy użyciu temperatury barwowej światła dziennego:
{
"brightness": "50",
"colorTemperature": "daylight"
}
W tym samouczku pokazujemy, jak skonfigurować wywołanie funkcji dla interfejsu Gemini API, aby interpretować żądania dotyczące oświetlenia użytkowników i mapować je na ustawienia interfejsu API w celu sterowania wartościami jasności i temperatury barwowej światła.
Zanim zaczniesz: skonfiguruj projekt i klucz interfejsu API
Zanim wywołasz Gemini API, musisz skonfigurować projekt klucz interfejsu API.
Zdefiniuj funkcję interfejsu API
Utwórz funkcję, która wysyła żądanie do interfejsu API. Funkcję tę należy zdefiniować w kodzie aplikacji, ale może ona wywoływać usługi lub interfejsy API spoza aplikacji. Gemini API nie wywołuje tej funkcji bezpośrednio, więc może kontrolować sposób i czas wykonywania tej funkcji w aplikacji w kodzie. Na potrzeby demonstracji ten samouczek definiuje fikcyjną funkcję interfejsu API, która zwraca tylko żądane wartości oświetlenia:
async function setLightValues(brightness, colorTemp) {
// This mock API returns the requested lighting values
return {
brightness: brightness,
colorTemperature: colorTemp
};
}
Utwórz deklaracje funkcji
Utwórz deklarację funkcji, którą przekażesz do modelu generatywnego. Kiedy zadeklarujesz funkcję do użytku przez model, podaj jak najwięcej szczegółów w opisach funkcji i parametrów. Model generatywny wykorzystuje te informacje do określenia, którą funkcję wybrać i jak udostępnić parametrów w wywołaniu funkcji. Poniższy kod pokazuje, jak zadeklarować funkcję sterowania oświetleniem:
const controlLightFunctionDeclaration = {
name: "controlLight",
parameters: {
type: "OBJECT",
description: "Set the brightness and color temperature of a room light.",
properties: {
brightness: {
type: "NUMBER",
description: "Light level from 0 to 100. Zero is off and 100 is full brightness.",
},
colorTemperature: {
type: "STRING",
description: "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
},
},
required: ["brightness", "colorTemperature"],
},
};
// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
controlLight: ({ brightness, colorTemperature }) => {
return setLightValues( brightness, colorTemperature)
}
};
Deklarowanie funkcji podczas inicjowania modelu
Jeśli chcesz używać wywołań funkcji z modelem, musisz podać
deklaracji funkcji podczas inicjowania obiektu modelu. Funkcje deklarujesz, ustawiając parametr tools
modelu:
const { GoogleGenerativeAI } = require("@google/generative-ai");
// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
// ...
const generativeModel = genAI.getGenerativeModel({
// Use a model that supports function calling, like a Gemini 1.5 model
model: "gemini-1.5-flash",
// Specify the function declaration.
tools: {
functionDeclarations: [controlLightFunctionDeclaration],
},
});
Generowanie wywołania funkcji
Po zainicjowaniu modelu za pomocą deklaracji funkcji możesz
w celu promptu model przy użyciu zdefiniowanej funkcji. Należy użyć wywoływania funkcji
za pomocą promptów na czacie (sendMessage()
), ponieważ funkcja
Korzyści płynące z kontekstu poprzednich promptów i odpowiedzi.
const chat = generativeModel.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";
// Send the message to the model.
const result = await chat.sendMessage(prompt);
// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];
if (call) {
// Call the executable function named in the function call
// with the arguments specified in the function call and
// let it call the hypothetical API.
const apiResponse = await functions[call.name](call.args);
// Send the API response back to the model so it can generate
// a text response that can be displayed to the user.
const result2 = await chat.sendMessage([{functionResponse: {
name: 'controlLight',
response: apiResponse
}}]);
// Log the text response.
console.log(result2.response.text());
}