Gemini (diğer adıyla Nano Banana 🍌) ile görüntü üretme

Gemini, görselleri etkileşimli olarak oluşturup işleyebilir. Hızlı Gemini 2.5 Flash veya gelişmiş Gemini 3 Pro Önizleme görüntü modellerine metin, resim ya da her ikisinin kombinasyonuyla istem girebilirsiniz. Bu sayede, görselleri benzeri görülmemiş bir kontrolle oluşturabilir, düzenleyebilir ve yineleyebilirsiniz:

  • Metinden Görüntüye, Görüntüden Görüntüye ve Çok Görüntüden Görüntüye: Metin açıklamalarından yüksek kaliteli görüntüler oluşturun, metin istemlerini kullanarak belirli bir görüntüyü düzenleyip ayarlayın veya yeni sahneler oluşturmak ve stilleri aktarmak için birden fazla giriş görüntüsü kullanın.
  • Tekrarlı iyileştirme: Resminizi birden fazla kez konuşma tarzında iyileştirerek mükemmel hale gelene kadar küçük ayarlamalar yapın.
  • Yüksek doğrulukta metin oluşturma: Logolar, diyagramlar ve posterler için ideal olan, okunabilir ve iyi yerleştirilmiş metin içeren görüntüleri doğru şekilde oluşturun.

Üretilen tüm görüntülerde SynthID filigranı bulunur.

Görüntü üretme (metinden görüntüye)

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

prompt = (
    "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"
)

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("generated_image.png")

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("gemini-native-image.png", buffer);
      console.log("Image saved as gemini-native-image.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      genai.Text("Create a picture of a nano banana dish in a " +
                 " fancy restaurant with a Gemini theme"),
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "gemini_generated_image.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class TextToImage {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme",
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("_01_generated_image.png"), blob.data().get());
          }
        }
      }
    }
  }
}

REST

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > gemini-native-image.png
Nano Banana yemeğinin yapay zekayla üretilmiş görüntüsü
Gemini temalı bir restoranda nano banana yemeğinin yapay zekayla üretilmiş görüntüsü

Görüntü düzenleme (metin ve resimden resme)

Hatırlatma: Yüklediğiniz tüm resimlerle ilgili gerekli haklara sahip olduğunuzdan emin olun. Başkalarının haklarını ihlal eden içerikler (ör. yanıltıcı, taciz edici veya zarar verici videolar ya da görüntüler) üretmeyin. Bu üretken yapay zeka hizmetinin kullanımı Yasaklanan Kullanım Politikamıza tabidir.

Resim sağlayın ve metin istemlerini kullanarak öğe ekleyin, kaldırın veya değiştirin, stili değiştirin ya da renk derecelendirmesini ayarlayın.

Aşağıdaki örnekte, Base64 kodlu resimlerin nasıl yükleneceği gösterilmektedir. Birden fazla resim, daha büyük yükler ve desteklenen MIME türleri için Resim anlama sayfasını inceleyin.

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

prompt = (
    "Create a picture of my cat eating a nano-banana in a "
    "fancy restaurant under the Gemini constellation",
)

image = Image.open("/path/to/cat_image.png")

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt, image],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("generated_image.png")

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "path/to/cat_image.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    { text: "Create a picture of my cat eating a nano-banana in a" +
            "fancy restaurant under the Gemini constellation" },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("gemini-native-image.png", buffer);
      console.log("Image saved as gemini-native-image.png");
    }
  }
}

main();

Go

package main

import (
 "context"
 "fmt"
 "log"
 "os"
 "google.golang.org/genai"
)

func main() {

 ctx := context.Background()
 client, err := genai.NewClient(ctx, nil)
 if err != nil {
     log.Fatal(err)
 }

 imagePath := "/path/to/cat_image.png"
 imgData, _ := os.ReadFile(imagePath)

 parts := []*genai.Part{
   genai.NewPartFromText("Create a picture of my cat eating a nano-banana in a fancy restaurant under the Gemini constellation"),
   &genai.Part{
     InlineData: &genai.Blob{
       MIMEType: "image/png",
       Data:     imgData,
     },
   },
 }

 contents := []*genai.Content{
   genai.NewContentFromParts(parts, genai.RoleUser),
 }

 result, _ := client.Models.GenerateContent(
     ctx,
     "gemini-2.5-flash-image",
     contents,
 )

 for _, part := range result.Candidates[0].Content.Parts {
     if part.Text != "" {
         fmt.Println(part.Text)
     } else if part.InlineData != nil {
         imageBytes := part.InlineData.Data
         outputFilename := "gemini_generated_image.png"
         _ = os.WriteFile(outputFilename, imageBytes, 0644)
     }
 }
}

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class TextAndImageToImage {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromText("""
                  Create a picture of my cat eating a nano-banana in
                  a fancy restaurant under the Gemini constellation
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("src/main/resources/cat.jpg")),
                  "image/jpeg")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("gemini_generated_image.png"), blob.data().get());
          }
        }
      }
    }
  }
}

REST

IMG_PATH=/path/to/cat_image.jpeg

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"'Create a picture of my cat eating a nano-banana in a fancy restaurant under the Gemini constellation\"},
            {
              \"inline_data\": {
                \"mime_type\":\"image/jpeg\",
                \"data\": \"$IMG_BASE64\"
              }
            }
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > gemini-edited-image.png
Muz yiyen bir kedinin yapay zekayla üretilmiş görüntüsü
Nano muz yiyen bir kedinin yapay zekayla üretilmiş görüntüsü

Çok turlu görüntü düzenleme

Görsel oluşturma ve düzenleme işlemlerine etkileşimli olarak devam edin. Resimler üzerinde yineleme yapmak için Chat veya çok turlu görüşme önerilir. Aşağıdaki örnekte, fotosentez hakkında bir infografik oluşturma istemi gösterilmektedir.

Python

from google import genai
from google.genai import types

client = genai.Client()

chat = client.chats.create(
    model="gemini-3-pro-image-preview",
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        tools=[{"google_search": {}}]
    )
)

message = "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant's favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids' cookbook, suitable for a 4th grader."

response = chat.send_message(message)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("photosynthesis.png")

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const chat = ai.chats.create({
    model: "gemini-3-pro-image-preview",
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      tools: [{googleSearch: {}}],
    },
  });

await main();

const message = "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant's favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids' cookbook, suitable for a 4th grader."

let response = await chat.sendMessage({message});

for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("photosynthesis.png", buffer);
      console.log("Image saved as photosynthesis.png");
    }
}

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }
    defer client.Close()

    model := client.GenerativeModel("gemini-3-pro-image-preview")
    model.GenerationConfig = &pb.GenerationConfig{
        ResponseModalities: []pb.ResponseModality{genai.Text, genai.Image},
    }
    chat := model.StartChat()

    message := "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant's favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids' cookbook, suitable for a 4th grader."

    resp, err := chat.SendMessage(ctx, genai.Text(message))
    if err != nil {
        log.Fatal(err)
    }

    for _, part := range resp.Candidates[0].Content.Parts {
        if txt, ok := part.(genai.Text); ok {
            fmt.Printf("%s", string(txt))
        } else if img, ok := part.(genai.ImageData); ok {
            err := os.WriteFile("photosynthesis.png", img.Data, 0644)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

Java

import com.google.genai.Chat;
import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;
import com.google.genai.types.RetrievalConfig;
import com.google.genai.types.Tool;
import com.google.genai.types.ToolConfig;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class MultiturnImageEditing {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {

      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .tools(Tool.builder()
              .googleSearch(GoogleSearch.builder().build())
              .build())
          .build();

      Chat chat = client.chats.create("gemini-3-pro-image-preview", config);

      GenerateContentResponse response = chat.sendMessage("""
          Create a vibrant infographic that explains photosynthesis
          as if it were a recipe for a plant's favorite food.
          Show the "ingredients" (sunlight, water, CO2)
          and the "finished dish" (sugar/energy).
          The style should be like a page from a colorful
          kids' cookbook, suitable for a 4th grader.
          """);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("photosynthesis.png"), blob.data().get());
          }
        }
      }
      // ...
    }
  }
}

REST

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "role": "user",
      "parts": [
        {"text": "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plants favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids cookbook, suitable for a 4th grader."}
      ]
    }],
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"]
    }
  }' > turn1_response.json

cat turn1_response.json
# Requires jq to parse JSON response
jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' turn1_response.json | head -1 | base64 --decode > photosynthesis.png
Fotosentez hakkında yapay zekayla üretilmiş infografik
Fotosentez hakkında yapay zekayla üretilmiş bir infografik

Ardından, grafikteki dili İspanyolca olarak değiştirmek için aynı sohbeti kullanabilirsiniz.

Python

message = "Update this infographic to be in Spanish. Do not change any other elements of the image."
aspect_ratio = "16:9" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "2K" # "1K", "2K", "4K"

response = chat.send_message(message,
    config=types.GenerateContentConfig(
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
            image_size=resolution
        ),
    ))

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("photosynthesis_spanish.png")

JavaScript

const message = 'Update this infographic to be in Spanish. Do not change any other elements of the image.';
const aspectRatio = '16:9';
const resolution = '2K';

let response = await chat.sendMessage({
  message,
  config: {
    responseModalities: ['TEXT', 'IMAGE'],
    imageConfig: {
      aspectRatio: aspectRatio,
      imageSize: resolution,
    },
    tools: [{googleSearch: {}}],
  },
});

for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("photosynthesis2.png", buffer);
      console.log("Image saved as photosynthesis2.png");
    }
}

Go

message = "Update this infographic to be in Spanish. Do not change any other elements of the image."
aspect_ratio = "16:9" // "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "2K"     // "1K", "2K", "4K"

model.GenerationConfig.ImageConfig = &pb.ImageConfig{
    AspectRatio: aspect_ratio,
    ImageSize:   resolution,
}

resp, err = chat.SendMessage(ctx, genai.Text(message))
if err != nil {
    log.Fatal(err)
}

for _, part := range resp.Candidates[0].Content.Parts {
    if txt, ok := part.(genai.Text); ok {
        fmt.Printf("%s", string(txt))
    } else if img, ok := part.(genai.ImageData); ok {
        err := os.WriteFile("photosynthesis_spanish.png", img.Data, 0644)
        if err != nil {
            log.Fatal(err)
        }
    }
}

Java

String aspectRatio = "16:9"; // "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
String resolution = "2K"; // "1K", "2K", "4K"

config = GenerateContentConfig.builder()
    .responseModalities("TEXT", "IMAGE")
    .imageConfig(ImageConfig.builder()
        .aspectRatio(aspectRatio)
        .imageSize(resolution)
        .build())
    .build();

response = chat.sendMessage(
    "Update this infographic to be in Spanish. " + 
    "Do not change any other elements of the image.",
    config);

for (Part part : response.parts()) {
  if (part.text().isPresent()) {
    System.out.println(part.text().get());
  } else if (part.inlineData().isPresent()) {
    var blob = part.inlineData().get();
    if (blob.data().isPresent()) {
      Files.write(Paths.get("photosynthesis_spanish.png"), blob.data().get());
    }
  }
}

REST

# Create request2.json by combining history and new prompt
# Read model's previous response content directly into jq
jq --argjson user1 '{"role": "user", "parts": [{"text": "Create a vibrant infographic that explains photosynthesis as if it were a recipe for a plant'\''s favorite food. Show the \"ingredients\" (sunlight, water, CO2) and the \"finished dish\" (sugar/energy). The style should be like a page from a colorful kids'\'' cookbook, suitable for a 4th grader."}]}' \
  --argjson user2 '{"role": "user", "parts": [{"text": "Update this infographic to be in Spanish. Do not change any other elements of the image."}]}' \
  -f /dev/stdin turn1_response.json > request2.json <<'EOF_JQ_FILTER'
.candidates[0].content | {
  "contents": [$user1, ., $user2],
  "tools": [{"google_search": {}}],
  "generationConfig": {
    "responseModalities": ["TEXT", "IMAGE"],
    "imageConfig": {
      "aspectRatio": "16:9",
      "imageSize": "2K"
    }
  }
}
EOF_JQ_FILTER

curl -s -X POST \
"https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
-H "Content-Type: application/json" \
-d @request2.json > turn2_response.json

jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' turn2_response.json | head -1 | base64 --decode > photosynthesis_spanish.png
İspanyolca fotosentez hakkında yapay zekayla üretilmiş infografik
İspanyolca fotosentez hakkında yapay zekayla üretilmiş bir infografik

Gemini 3 Pro Image ile gelen yenilikler

Gemini 3 Pro Image (gemini-3-pro-image-preview), profesyonel öğe üretimi için optimize edilmiş, ileri teknoloji bir görüntü oluşturma ve düzenleme modelidir. Gelişmiş akıl yürütme özelliğiyle en zorlu iş akışlarını ele almak için tasarlanan Gemini Ultra, karmaşık ve çok turlu içerik oluşturma ve değiştirme görevlerinde üstün performans gösterir.

  • Yüksek çözünürlüklü çıkış: 1K, 2K ve 4K görseller için yerleşik üretim özellikleri.
  • Gelişmiş metin oluşturma: İnfografikler, menüler, diyagramlar ve pazarlama öğeleri için okunabilir, stilize edilmiş metinler oluşturabilir.
  • Google Arama ile temellendirme: Model, Google Arama'yı bir araç olarak kullanarak gerçekleri doğrulayabilir ve gerçek zamanlı verilere (ör. mevcut hava durumu haritaları, borsa grafikleri, son olaylar) dayalı görüntüler oluşturabilir.
  • Düşünme modu: Model, karmaşık istemleri anlamak için "düşünme" sürecini kullanır. Son yüksek kaliteli çıktıyı üretmeden önce kompozisyonu iyileştirmek için geçici "düşünce resimleri" oluşturur (arka uçta görünür ancak ücretlendirilmez).
  • En fazla 14 referans görsel: Artık nihai resmi oluşturmak için en fazla 14 referans görseli karıştırabilirsiniz.

En fazla 14 referans görseli kullanma

Gemini 3 Pro Önizleme, 14 referans resmine kadar karıştırmanıza olanak tanır. Bu 14 resim aşağıdakileri içerebilir:

  • Son resme eklenecek, yüksek kaliteli en fazla 6 nesne resmi
  • Karakter tutarlılığını korumak için en fazla 5 insan resmi

Python

from google import genai
from google.genai import types
from PIL import Image

prompt = "An office group photo of these people, they are making funny faces."
aspect_ratio = "5:4" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "2K" # "1K", "2K", "4K"

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[
        prompt,
        Image.open('person1.png'),
        Image.open('person2.png'),
        Image.open('person3.png'),
        Image.open('person4.png'),
        Image.open('person5.png'),
    ],
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
            image_size=resolution
        ),
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("office.png")

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
      'An office group photo of these people, they are making funny faces.';
  const aspectRatio = '5:4';
  const resolution = '2K';

const contents = [
  { text: prompt },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile1,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile2,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile3,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile4,
    },
  },
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile5,
    },
  }
];

const response = await ai.models.generateContent({
    model: 'gemini-3-pro-image-preview',
    contents: contents,
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      imageConfig: {
        aspectRatio: aspectRatio,
        imageSize: resolution,
      },
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("image.png", buffer);
      console.log("Image saved as image.png");
    }
  }

}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }
    defer client.Close()

    model := client.GenerativeModel("gemini-3-pro-image-preview")
    model.GenerationConfig = &pb.GenerationConfig{
        ResponseModalities: []pb.ResponseModality{genai.Text, genai.Image},
        ImageConfig: &pb.ImageConfig{
            AspectRatio: "5:4",
            ImageSize:   "2K",
        },
    }

    img1, err := os.ReadFile("person1.png")
    if err != nil { log.Fatal(err) }
    img2, err := os.ReadFile("person2.png")
    if err != nil { log.Fatal(err) }
    img3, err := os.ReadFile("person3.png")
    if err != nil { log.Fatal(err) }
    img4, err := os.ReadFile("person4.png")
    if err != nil { log.Fatal(err) }
    img5, err := os.ReadFile("person5.png")
    if err != nil { log.Fatal(err) }

    parts := []genai.Part{
        genai.Text("An office group photo of these people, they are making funny faces."),
        genai.ImageData{MIMEType: "image/png", Data: img1},
        genai.ImageData{MIMEType: "image/png", Data: img2},
        genai.ImageData{MIMEType: "image/png", Data: img3},
        genai.ImageData{MIMEType: "image/png", Data: img4},
        genai.ImageData{MIMEType: "image/png", Data: img5},
    }

    resp, err := model.GenerateContent(ctx, parts...)
    if err != nil {
        log.Fatal(err)
    }

    for _, part := range resp.Candidates[0].Content.Parts {
        if txt, ok := part.(genai.Text); ok {
            fmt.Printf("%s", string(txt))
        } else if img, ok := part.(genai.ImageData); ok {
            err := os.WriteFile("office.png", img.Data, 0644)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class GroupPhoto {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .imageConfig(ImageConfig.builder()
              .aspectRatio("5:4")
              .imageSize("2K")
              .build())
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromText("An office group photo of these people, they are making funny faces."),
              Part.fromBytes(Files.readAllBytes(Path.of("person1.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person2.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person3.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person4.png")), "image/png"),
              Part.fromBytes(Files.readAllBytes(Path.of("person5.png")), "image/png")
          ), config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("office.png"), blob.data().get());
          }
        }
      }
    }
  }
}

REST

IMG_PATH1=person1.png
IMG_PATH2=person2.png
IMG_PATH3=person3.png
IMG_PATH4=person4.png
IMG_PATH5=person5.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG1_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH1" 2>&1)
IMG2_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH2" 2>&1)
IMG3_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH3" 2>&1)
IMG4_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH4" 2>&1)
IMG5_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH5" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"An office group photo of these people, they are making funny faces.\"},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG1_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG2_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG3_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG4_BASE64\"}},
            {\"inline_data\": {\"mime_type\":\"image/png\", \"data\": \"$IMG5_BASE64\"}}
        ]
      }],
      \"generationConfig\": {
        \"responseModalities\": [\"TEXT\", \"IMAGE\"],
        \"imageConfig\": {
          \"aspectRatio\": \"5:4\",
          \"imageSize\": \"2K\"
        }
      }
    }" | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | head -1 | base64 --decode > office.png
Yapay zekayla üretilmiş ofis grubu fotoğrafı
Yapay zekayla üretilen ofis grubu fotoğrafı

Google Arama ile temellendirme

Hava durumu tahminleri, borsa grafikleri veya son olaylar gibi gerçek zamanlı bilgilere dayalı görüntüler oluşturmak için Google Arama aracını kullanın.

Görüntü oluşturma ile birlikte Google Arama'yı Temellendirme özelliğini kullanırken görüntü tabanlı arama sonuçlarının oluşturma modeline aktarılmadığını ve yanıttan çıkarıldığını unutmayın.

Python

from google import genai
prompt = "Visualize the current weather forecast for the next 5 days in San Francisco as a clean, modern weather chart. Add a visual on what I should wear each day"
aspect_ratio = "16:9" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=prompt,
    config=types.GenerateContentConfig(
        response_modalities=['Text', 'Image'],
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
        ),
        tools=[{"google_search": {}}]
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("weather.png")

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt = 'Visualize the current weather forecast for the next 5 days in San Francisco as a clean, modern weather chart. Add a visual on what I should wear each day';
  const aspectRatio = '16:9';
  const resolution = '2K';

const response = await ai.models.generateContent({
    model: 'gemini-3-pro-image-preview',
    contents: prompt,
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      imageConfig: {
        aspectRatio: aspectRatio,
        imageSize: resolution,
      },
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("image.png", buffer);
      console.log("Image saved as image.png");
    }
  }

}

main();

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;
import com.google.genai.types.Tool;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class SearchGrounding {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .imageConfig(ImageConfig.builder()
              .aspectRatio("16:9")
              .build())
          .tools(Tool.builder()
              .googleSearch(GoogleSearch.builder().build())
              .build())
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview", """
              Visualize the current weather forecast for the next 5 days 
              in San Francisco as a clean, modern weather chart. 
              Add a visual on what I should wear each day
              """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("weather.png"), blob.data().get());
          }
        }
      }
    }
  }
}

REST

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{"parts": [{"text": "Visualize the current weather forecast for the next 5 days in San Francisco as a clean, modern weather chart. Add a visual on what I should wear each day"}]}],
    "tools": [{"google_search": {}}],
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {"aspectRatio": "16:9"}
    }
  }' | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | head -1 | base64 --decode > weather.png
San Francisco için yapay zekayla üretilmiş beş günlük hava durumu grafiği
San Francisco için yapay zekayla üretilmiş beş günlük hava durumu grafiği

Yanıtta, aşağıdaki zorunlu alanları içeren groundingMetadata yer alıyor:

  • searchEntryPoint: Gerekli arama önerilerini oluşturmak için HTML ve CSS'yi içerir.
  • groundingChunks: Oluşturulan görüntüyü temellendirmek için kullanılan en iyi 3 web kaynağını döndürür.

4K çözünürlüğe kadar görüntü oluşturma

Gemini 3 Pro Image, varsayılan olarak 1.000 görüntü üretir ancak 2.000 ve 4.000 görüntü de oluşturabilir. Daha yüksek çözünürlüklü öğeler oluşturmak için generation_config içinde image_size değerini belirtin.

Büyük harf "K" kullanmanız gerekir (ör. 1.000, 2.000, 4.000). Küçük harfli parametreler (ör. 1k) reddedilir.

Python

from google import genai
from google.genai import types

prompt = "Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English." 
aspect_ratio = "1:1" # "1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9","21:9"
resolution = "1K" # "1K", "2K", "4K"

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=prompt,
    config=types.GenerateContentConfig(
        response_modalities=['TEXT', 'IMAGE'],
        image_config=types.ImageConfig(
            aspect_ratio=aspect_ratio,
            image_size=resolution
        ),
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif image:= part.as_image():
        image.save("butterfly.png")

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
      'Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English.';
  const aspectRatio = '1:1';
  const resolution = '1K';

  const response = await ai.models.generateContent({
    model: 'gemini-3-pro-image-preview',
    contents: prompt,
    config: {
      responseModalities: ['TEXT', 'IMAGE'],
      imageConfig: {
        aspectRatio: aspectRatio,
        imageSize: resolution,
      },
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("image.png", buffer);
      console.log("Image saved as image.png");
    }
  }

}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }
    defer client.Close()

    model := client.GenerativeModel("gemini-3-pro-image-preview")
    model.GenerationConfig = &pb.GenerationConfig{
        ResponseModalities: []pb.ResponseModality{genai.Text, genai.Image},
        ImageConfig: &pb.ImageConfig{
            AspectRatio: "1:1",
            ImageSize:   "1K",
        },
    }

    prompt := "Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English."
    resp, err := model.GenerateContent(ctx, genai.Text(prompt))
    if err != nil {
        log.Fatal(err)
    }

    for _, part := range resp.Candidates[0].Content.Parts {
        if txt, ok := part.(genai.Text); ok {
            fmt.Printf("%s", string(txt))
        } else if img, ok := part.(genai.ImageData); ok {
            err := os.WriteFile("butterfly.png", img.Data, 0644)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.ImageConfig;
import com.google.genai.types.Part;
import com.google.genai.types.Tool;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class HiRes {
    public static void main(String[] args) throws IOException {

      try (Client client = new Client()) {
        GenerateContentConfig config = GenerateContentConfig.builder()
            .responseModalities("TEXT", "IMAGE")
            .imageConfig(ImageConfig.builder()
                .aspectRatio("16:9")
                .imageSize("4K")
                .build())
            .build();

        GenerateContentResponse response = client.models.generateContent(
            "gemini-3-pro-image-preview", """
              Da Vinci style anatomical sketch of a dissected Monarch butterfly.
              Detailed drawings of the head, wings, and legs on textured
              parchment with notes in English.
              """,
            config);

        for (Part part : response.parts()) {
          if (part.text().isPresent()) {
            System.out.println(part.text().get());
          } else if (part.inlineData().isPresent()) {
            var blob = part.inlineData().get();
            if (blob.data().isPresent()) {
              Files.write(Paths.get("butterfly.png"), blob.data().get());
            }
          }
        }
      }
    }
}

REST

curl -s -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{"parts": [{"text": "Da Vinci style anatomical sketch of a dissected Monarch butterfly. Detailed drawings of the head, wings, and legs on textured parchment with notes in English."}]}],
    "tools": [{"google_search": {}}],
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {"aspectRatio": "1:1", "imageSize": "1K"}
    }
  }' | jq -r '.candidates[0].content.parts[] | select(.inlineData) | .inlineData.data' | head -1 | base64 --decode > butterfly.png

Aşağıda, bu istemden oluşturulan örnek bir resim verilmiştir:

Yapay zeka tarafından üretilmiş, Da Vinci tarzında, parçalanmış bir kral kelebeğinin anatomik çizimi.
Kral kelebeğinin diseksiyonu yapılmış halinin, Da Vinci tarzında yapay zekayla üretilmiş anatomik çizimi.

Düşünme Süreci

Gemini 3 Pro Image Preview modeli, düşünebilen bir modeldir ve karmaşık istemler için akıl yürütme sürecini ("Düşünme") kullanır. Bu özellik varsayılan olarak etkindir ve API'de devre dışı bırakılamaz. Düşünme süreci hakkında daha fazla bilgi edinmek için Gemini Düşünme rehberine bakın.

Model, kompozisyonu ve mantığı test etmek için en fazla iki ara resim oluşturur. Düşünme içindeki son resim, oluşturulan nihai resimdir.

Son görüntünün üretilmesine yol açan düşünceleri kontrol edebilirsiniz.

Python

for part in response.parts:
    if part.thought:
        if part.text:
            print(part.text)
        elif image:= part.as_image():
            image.show()

JavaScript

for (const part of response.candidates[0].content.parts) {
  if (part.thought) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, 'base64');
      fs.writeFileSync('image.png', buffer);
      console.log('Image saved as image.png');
    }
  }
}

Düşünce İmzaları

Düşünce imzaları, modelin dahili düşünce sürecinin şifrelenmiş temsilleridir ve çok turlu etkileşimlerde muhakeme bağlamını korumak için kullanılır. Tüm yanıtlarda thought_signature alanı bulunur. Genel bir kural olarak, bir model yanıtında düşünce imzası alırsanız bir sonraki turda görüşme geçmişini gönderirken bunu aynen aldığınız şekilde geri iletmeniz gerekir. Düşünce imzalarının dolaşıma sokulmaması yanıtın başarısız olmasına neden olabilir. İmzalarla ilgili daha fazla açıklama için düşünce imzası dokümanlarını inceleyin.

Düşünce imzaları şu şekilde çalışır:

  • Yanıtta yer alan, resim mimetype içeren tüm inline_data bölümleri imzalı olmalıdır.
  • Düşüncelerden hemen sonra (herhangi bir resimden önce) metin bölümleri varsa ilk metin bölümünde de imza bulunmalıdır.
  • Düşüncelerin imzası yoktur. inline_dataResim içeren bölümlermimetype düşüncelerin bir parçasıysa bu bölümlerde imza bulunmaz.

Aşağıdaki kodda, düşünce imzalarının nereye eklendiğine dair bir örnek gösterilmektedir:

[
  {
    "inline_data": {
      "data": "<base64_image_data_0>",
      "mime_type": "image/png"
    },
    "thought": true // Thoughts don't have signatures
  },
  {
    "inline_data": {
      "data": "<base64_image_data_1>",
      "mime_type": "image/png"
    },
    "thought": true // Thoughts don't have signatures
  },
  {
    "inline_data": {
      "data": "<base64_image_data_2>",
      "mime_type": "image/png"
    },
    "thought": true // Thoughts don't have signatures
  },
  {
    "text": "Here is a step-by-step guide to baking macarons, presented in three separate images.\n\n### Step 1: Piping the Batter\n\nThe first step after making your macaron batter is to pipe it onto a baking sheet. This requires a steady hand to create uniform circles.\n\n",
    "thought_signature": "<Signature_A>" // The first non-thought part always has a signature
  },
  {
    "inline_data": {
      "data": "<base64_image_data_3>",
      "mime_type": "image/png"
    },
    "thought_signature": "<Signature_B>" // All image parts have a signatures
  },
  {
    "text": "\n\n### Step 2: Baking and Developing Feet\n\nOnce piped, the macarons are baked in the oven. A key sign of a successful bake is the development of \"feet\"—the ruffled edge at the base of each macaron shell.\n\n"
    // Follow-up text parts don't have signatures
  },
  {
    "inline_data": {
      "data": "<base64_image_data_4>",
      "mime_type": "image/png"
    },
    "thought_signature": "<Signature_C>" // All image parts have a signatures
  },
  {
    "text": "\n\n### Step 3: Assembling the Macaron\n\nThe final step is to pair the cooled macaron shells by size and sandwich them together with your desired filling, creating the classic macaron dessert.\n\n"
  },
  {
    "inline_data": {
      "data": "<base64_image_data_5>",
      "mime_type": "image/png"
    },
    "thought_signature": "<Signature_D>" // All image parts have a signatures
  }
]

Diğer görüntü üretme modları

Gemini, istem yapısına ve bağlama dayalı olarak diğer görüntü etkileşimi modlarını da destekler. Örneğin:

  • Metinden resimlere ve metne (araya eklenmiş): İlgili metinleri içeren resimler oluşturur.
    • Örnek istem: "Paella için resimli bir tarif oluştur."
  • Resimler ve metinlerden resimler ve metinler (dönüşümlü): Yeni ilgili resimler ve metinler oluşturmak için giriş resimlerini ve metinlerini kullanır.
    • Örnek istem: (Mobilyalı bir odanın resmiyle birlikte) "Mekanıma hangi renklerde kanepeler yakışır? Resmi güncelleyebilir misin?"

Toplu olarak resim oluşturma

Çok sayıda resim oluşturmanız gerekiyorsa Batch API'yi kullanabilirsiniz. 24 saate kadar yanıt süresi karşılığında daha yüksek hız sınırları elde edersiniz.

Toplu API görüntü örnekleri ve kodu için Toplu API görüntü oluşturma belgelerini ve yemek kitabını inceleyin.

İstem yazma kılavuzu ve stratejileri

Görüntü oluşturma konusunda uzmanlaşmak için temel bir ilkeyi anlamanız gerekir:

Anahtar kelimeleri listelemekle yetinmeyin, sahneyi açıklayın. Modelin temel gücü, dili derinlemesine anlamasıdır. Bir anlatı, açıklayıcı paragraf neredeyse her zaman bağlantısız kelimelerden oluşan bir listeden daha iyi ve tutarlı bir görüntü üretir.

Görüntü üretme istemleri

Aşağıdaki stratejiler, tam olarak aradığınız görselleri oluşturmak için etkili istemler yazmanıza yardımcı olacaktır.

1. Fotoğraf gerçekliğinde sahneler

Gerçekçi görüntüler için fotoğrafçılık terimlerini kullanın. Modeli fotogerçekçi bir sonuca yönlendirmek için kamera açıları, lens türleri, ışıklandırma ve ince ayrıntılardan bahsedin.

Şablon

A photorealistic [shot type] of [subject], [action or expression], set in
[environment]. The scene is illuminated by [lighting description], creating
a [mood] atmosphere. Captured with a [camera/lens details], emphasizing
[key textures and details]. The image should be in a [aspect ratio] format.

İstem

A photorealistic close-up portrait of an elderly Japanese ceramicist with
deep, sun-etched wrinkles and a warm, knowing smile. He is carefully
inspecting a freshly glazed tea bowl. The setting is his rustic,
sun-drenched workshop. The scene is illuminated by soft, golden hour light
streaming through a window, highlighting the fine texture of the clay.
Captured with an 85mm portrait lens, resulting in a soft, blurred background
(bokeh). The overall mood is serene and masterful. Vertical portrait
orientation.

Python

from google import genai
from google.genai import types    

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("photorealistic_example.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class PhotorealisticScene {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A photorealistic close-up portrait of an elderly Japanese ceramicist
          with deep, sun-etched wrinkles and a warm, knowing smile. He is
          carefully inspecting a freshly glazed tea bowl. The setting is his
          rustic, sun-drenched workshop with pottery wheels and shelves of
          clay pots in the background. The scene is illuminated by soft,
          golden hour light streaming through a window, highlighting the
          fine texture of the clay and the fabric of his apron. Captured
          with an 85mm portrait lens, resulting in a soft, blurred
          background (bokeh). The overall mood is serene and masterful.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("photorealistic_example.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("photorealistic_example.png", buffer);
      console.log("Image saved as photorealistic_example.png");
    }
  }
}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "photorealistic_example.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

REST

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A photorealistic close-up portrait of an elderly Japanese ceramicist with deep, sun-etched wrinkles and a warm, knowing smile. He is carefully inspecting a freshly glazed tea bowl. The setting is his rustic, sun-drenched workshop with pottery wheels and shelves of clay pots in the background. The scene is illuminated by soft, golden hour light streaming through a window, highlighting the fine texture of the clay and the fabric of his apron. Captured with an 85mm portrait lens, resulting in a soft, blurred background (bokeh). The overall mood is serene and masterful."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > photorealistic_example.png
Yaşlı bir Japon seramik sanatçısının fotogerçekçi yakın çekim portresi...
Yaşlı bir Japon seramik sanatçısının fotoğraf gerçekliğinde yakın çekim portresi...

2. Stilize edilmiş çizimler ve çıkartmalar

Çıkartma, simge veya öğe oluşturmak için stil hakkında net olun ve şeffaf bir arka plan isteyin.

Şablon

A [style] sticker of a [subject], featuring [key characteristics] and a
[color palette]. The design should have [line style] and [shading style].
The background must be transparent.

İstem

A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's
munching on a green bamboo leaf. The design features bold, clean outlines,
simple cel-shading, and a vibrant color palette. The background must be white.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("red_panda_sticker.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class StylizedIllustration {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A kawaii-style sticker of a happy red panda wearing a tiny bamboo
          hat. It's munching on a green bamboo leaf. The design features
          bold, clean outlines, simple cel-shading, and a vibrant color
          palette. The background must be white.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("red_panda_sticker.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("red_panda_sticker.png", buffer);
      console.log("Image saved as red_panda_sticker.png");
    }
  }
}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It's munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "red_panda_sticker.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

REST

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A kawaii-style sticker of a happy red panda wearing a tiny bamboo hat. It'"'"'s munching on a green bamboo leaf. The design features bold, clean outlines, simple cel-shading, and a vibrant color palette. The background must be white."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > red_panda_sticker.png
Mutlu bir kırmızı...
Mutlu bir kızıl pandanın kawaii tarzı çıkartması...

3. Resimlerdeki metinlerin doğruluğu

Gemini, metin oluşturma konusunda üstündür. Metin, yazı tipi stili (açıklayıcı bir şekilde) ve genel tasarım hakkında net olun. Profesyonel öğe üretimi için Gemini 3 Pro Görüntü Önizleme'yi kullanın.

Şablon

Create a [image type] for [brand/concept] with the text "[text to render]"
in a [font style]. The design should be [style description], with a
[color scheme].

İstem

Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.

Python

from google import genai
from google.genai import types    

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents="Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.",
    config=types.GenerateContentConfig(
        image_config=types.ImageConfig(
            aspect_ratio="1:1",
        )
    )
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("logo_example.jpg")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import com.google.genai.types.ImageConfig;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class AccurateTextInImages {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .imageConfig(ImageConfig.builder()
              .aspectRatio("1:1")
              .build())
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          """
          Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("logo_example.jpg"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way.";

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
    config: {
      imageConfig: {
        aspectRatio: "1:1",
      },
    },
  });
  for (const part of response.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("logo_example.jpg", buffer);
      console.log("Image saved as logo_example.jpg");
    }
  }
}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-3-pro-image-preview",
        genai.Text("Create a modern, minimalist logo for a coffee shop called 'The Daily Grind'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way."),
        &genai.GenerateContentConfig{
            ImageConfig: &genai.ImageConfig{
              AspectRatio: "1:1",
            },
        },
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "logo_example.jpg"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

REST

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "Create a modern, minimalist logo for a coffee shop called '"'"'The Daily Grind'"'"'. The text should be in a clean, bold, sans-serif font. The color scheme is black and white. Put the logo in a circle. Use a coffee bean in a clever way."}
      ]
    }],
    "generationConfig": {
      "imageConfig": {
        "aspectRatio": "1:1"
      }
    }
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > logo_example.jpg
&quot;The Daily Grind&quot; adlı bir kafe için modern ve minimalist bir logo oluştur...
"The Daily Grind" adlı bir kahve dükkanı için modern ve minimalist bir logo oluştur...

4. Ürün maketleri ve ticari fotoğrafçılık

E-ticaret, reklam veya markalama için temiz ve profesyonel ürün çekimleri oluşturmak üzere idealdir.

Şablon

A high-resolution, studio-lit product photograph of a [product description]
on a [background surface/description]. The lighting is a [lighting setup,
e.g., three-point softbox setup] to [lighting purpose]. The camera angle is
a [angle type] to showcase [specific feature]. Ultra-realistic, with sharp
focus on [key detail]. [Aspect ratio].

İstem

A high-resolution, studio-lit product photograph of a minimalist ceramic
coffee mug in matte black, presented on a polished concrete surface. The
lighting is a three-point softbox setup designed to create soft, diffused
highlights and eliminate harsh shadows. The camera angle is a slightly
elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with
sharp focus on the steam rising from the coffee. Square image.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("product_mockup.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class ProductMockup {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A high-resolution, studio-lit product photograph of a minimalist
          ceramic coffee mug in matte black, presented on a polished
          concrete surface. The lighting is a three-point softbox setup
          designed to create soft, diffused highlights and eliminate harsh
          shadows. The camera angle is a slightly elevated 45-degree shot
          to showcase its clean lines. Ultra-realistic, with sharp focus
          on the steam rising from the coffee. Square image.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("product_mockup.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("product_mockup.png", buffer);
      console.log("Image saved as product_mockup.png");
    }
  }
}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "product_mockup.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

REST

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A high-resolution, studio-lit product photograph of a minimalist ceramic coffee mug in matte black, presented on a polished concrete surface. The lighting is a three-point softbox setup designed to create soft, diffused highlights and eliminate harsh shadows. The camera angle is a slightly elevated 45-degree shot to showcase its clean lines. Ultra-realistic, with sharp focus on the steam rising from the coffee. Square image."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > product_mockup.png
Minimalist bir seramik kahve kupasının yüksek çözünürlüklü, stüdyo ışıklı ürün fotoğrafı...
Minimalist bir seramik kahve kupasının yüksek çözünürlüklü, stüdyo ışığıyla çekilmiş ürün fotoğrafı...

5. Minimalist ve negatif alan tasarımı

Metnin yerleştirileceği web siteleri, sunumlar veya pazarlama materyalleri için arka plan oluşturmak üzere mükemmeldir.

Şablon

A minimalist composition featuring a single [subject] positioned in the
[bottom-right/top-left/etc.] of the frame. The background is a vast, empty
[color] canvas, creating significant negative space. Soft, subtle lighting.
[Aspect ratio].

İstem

A minimalist composition featuring a single, delicate red maple leaf
positioned in the bottom-right of the frame. The background is a vast, empty
off-white canvas, creating significant negative space for text. Soft,
diffused lighting from the top left. Square image.

Python

from google import genai
from google.genai import types    

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents="A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image.",
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("minimalist_design.png")

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class MinimalistDesign {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          """
          A minimalist composition featuring a single, delicate red maple
          leaf positioned in the bottom-right of the frame. The background
          is a vast, empty off-white canvas, creating significant negative
          space for text. Soft, diffused lighting from the top left.
          Square image.
          """,
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("minimalist_design.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const prompt =
    "A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("minimalist_design.png", buffer);
      console.log("Image saved as minimalist_design.png");
    }
  }
}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-2.5-flash-image",
        genai.Text("A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image."),
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "minimalist_design.png"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

REST

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "contents": [{
      "parts": [
        {"text": "A minimalist composition featuring a single, delicate red maple leaf positioned in the bottom-right of the frame. The background is a vast, empty off-white canvas, creating significant negative space for text. Soft, diffused lighting from the top left. Square image."}
      ]
    }]
  }' \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > minimalist_design.png
Tek bir zarif kırmızı akçaağaç yaprağının yer aldığı minimalist bir kompozisyon...
Tek bir narin kırmızı akçaağaç yaprağının yer aldığı minimalist bir kompozisyon...

6. Sıralı sanat (çizgi roman paneli / resimli taslak)

Görsel hikaye anlatımı için paneller oluşturmak üzere karakter tutarlılığı ve sahne açıklaması üzerine kuruludur. Metin doğruluğu ve hikaye anlatma becerisi için bu istemler en iyi sonucu Gemini 3 Pro Image Preview ile verir.

Şablon

Make a 3 panel comic in a [style]. Put the character in a [type of scene].

İstem

Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene.

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

image_input = Image.open('/path/to/your/man_in_white_glasses.jpg')
text_input = "Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene."

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[text_input, image_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("comic_panel.jpg")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class ComicPanel {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromText("""
                  Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene.
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/man_in_white_glasses.jpg")),
                  "image/jpeg")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("comic_panel.jpg"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/man_in_white_glasses.jpg";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {text: "Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene."},
    {
      inlineData: {
        mimeType: "image/jpeg",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("comic_panel.jpg", buffer);
      console.log("Image saved as comic_panel.jpg");
    }
  }
}

main();

Go

package main

import (
    "context"
    "fmt"
    "log"
    "os"
    "google.golang.org/genai"
)

func main() {

    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    imagePath := "/path/to/your/man_in_white_glasses.jpg"
    imgData, _ := os.ReadFile(imagePath)

    parts := []*genai.Part{
      genai.NewPartFromText("Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene."),
      &genai.Part{
        InlineData: &genai.Blob{
          MIMEType: "image/jpeg",
          Data:     imgData,
        },
      },
    }

    contents := []*genai.Content{
      genai.NewContentFromParts(parts, genai.RoleUser),
    }

    result, _ := client.Models.GenerateContent(
        ctx,
        "gemini-3-pro-image-preview",
        contents,
    )

    for _, part := range result.Candidates[0].Content.Parts {
        if part.Text != "" {
            fmt.Println(part.Text)
        } else if part.InlineData != nil {
            imageBytes := part.InlineData.Data
            outputFilename := "comic_panel.jpg"
            _ = os.WriteFile(outputFilename, imageBytes, 0644)
        }
    }
}

REST

IMG_PATH=/path/to/your/man_in_white_glasses.jpg

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -s -X POST
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Type: application/json" \
  -d "{
    \"contents\": [{
      \"parts\": [
        {\"text\": \"Make a 3 panel comic in a gritty, noir art style with high-contrast black and white inks. Put the character in a humurous scene.\"},
        {\"inline_data\": {\"mime_type\":\"image/jpeg\", \"data\": \"$IMG_BASE64\"}}
      ]
    }]
  }" \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > comic_panel.jpg

Giriş

Çıkış

Beyaz gözlüklü adam
Giriş resmi
Karanlık ve noir tarzında 3 panelli bir çizgi roman oluştur...
Karanlık ve karamsar bir sanat tarzında 3 panelli bir çizgi roman oluştur...

Resimleri düzenleme istemleri

Bu örneklerde, düzenleme, kompozisyon ve stil aktarımı için metin istemlerinizle birlikte nasıl resim sağlayacağınız gösterilmektedir.

1. Öğe ekleme ve kaldırma

Bir resim sağlayın ve değişikliğinizi açıklayın. Model, orijinal resmin stili, ışığı ve perspektifiyle eşleşir.

Şablon

Using the provided image of [subject], please [add/remove/modify] [element]
to/from the scene. Ensure the change is [description of how the change should
integrate].

İstem

"Using the provided image of my cat, please add a small, knitted wizard hat
on its head. Make it look like it's sitting comfortably and matches the soft
lighting of the photo."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompt: "A photorealistic picture of a fluffy ginger cat sitting on a wooden floor, looking directly at the camera. Soft, natural light from a window."
image_input = Image.open('/path/to/your/cat_photo.png')
text_input = """Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[text_input, image_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("cat_with_hat.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class AddRemoveElements {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromText("""
                  Using the provided image of my cat, please add a small,
                  knitted wizard hat on its head. Make it look like it's
                  sitting comfortably and not falling off.
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/cat_photo.png")),
                  "image/png")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("cat_with_hat.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/cat_photo.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    { text: "Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off." },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("cat_with_hat.png", buffer);
      console.log("Image saved as cat_with_hat.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/cat_photo.png"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    genai.NewPartFromText("Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off."),
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "cat_with_hat.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

REST

IMG_PATH=/path/to/your/cat_photo.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"Using the provided image of my cat, please add a small, knitted wizard hat on its head. Make it look like it's sitting comfortably and not falling off.\"},
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            }
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > cat_with_hat.png

Giriş

Çıkış

Tüylü bir kızıl kedinin fotogerçekçi resmi.
Kabarık tüylü, kızıl renkli bir kedinin fotoğraf gerçekliğinde resmi...
Lütfen kedimin sağlanan resmini kullanarak küçük, örgü bir sihirbaz şapkası ekle.
Kedi fotoğrafımı kullanarak lütfen küçük, örgü bir sihirbaz şapkası ekle...

2. İç boyama (Anlamsal maskeleme)

Bir resmin belirli bir bölümünü düzenlemek için "maske"yi sohbet ederek tanımlayın. Resmin geri kalanı değiştirilmez.

Şablon

Using the provided image, change only the [specific element] to [new
element/description]. Keep everything else in the image exactly the same,
preserving the original style, lighting, and composition.

İstem

"Using the provided image of a living room, change only the blue sofa to be
a vintage, brown leather chesterfield sofa. Keep the rest of the room,
including the pillows on the sofa and the lighting, unchanged."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompt: "A wide shot of a modern, well-lit living room with a prominent blue sofa in the center. A coffee table is in front of it and a large window is in the background."
living_room_image = Image.open('/path/to/your/living_room.png')
text_input = """Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[living_room_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("living_room_edited.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Inpainting {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/living_room.png")),
                  "image/png"),
              Part.fromText("""
                  Using the provided image of a living room, change
                  only the blue sofa to be a vintage, brown leather
                  chesterfield sofa. Keep the rest of the room,
                  including the pillows on the sofa and the lighting,
                  unchanged.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("living_room_edited.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/living_room.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
    { text: "Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("living_room_edited.png", buffer);
      console.log("Image saved as living_room_edited.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/living_room.png"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
    genai.NewPartFromText("Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "living_room_edited.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

REST

IMG_PATH=/path/to/your/living_room.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            },
            {\"text\": \"Using the provided image of a living room, change only the blue sofa to be a vintage, brown leather chesterfield sofa. Keep the rest of the room, including the pillows on the sofa and the lighting, unchanged.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > living_room_edited.png

Giriş

Çıkış

Modern ve iyi aydınlatılmış bir oturma odasının geniş çekimi...
Modern ve iyi aydınlatılmış bir oturma odasının geniş açılı çekimi...
Verilen oturma odası resmini kullanarak yalnızca mavi kanepenin yerine vintage tarzda, kahverengi deri bir Chesterfield kanepe ekleyin.
Oturma odasının sağlanan resmini kullanarak yalnızca mavi kanepenin yerine vintage tarzda, kahverengi deri Chesterfield kanepe ekle...

3. Stil aktarımı

Bir resim sağlayın ve modelden içeriğini farklı bir sanatsal tarzda yeniden oluşturmasını isteyin.

Şablon

Transform the provided photograph of [subject] into the artistic style of [artist/art style]. Preserve the original composition but render it with [description of stylistic elements].

İstem

"Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompt: "A photorealistic, high-resolution photograph of a busy city street in New York at night, with bright neon signs, yellow taxis, and tall skyscrapers."
city_image = Image.open('/path/to/your/city.png')
text_input = """Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[city_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("city_style_transfer.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class StyleTransfer {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/city.png")),
                  "image/png"),
              Part.fromText("""
                  Transform the provided photograph of a modern city
                  street at night into the artistic style of
                  Vincent van Gogh's 'Starry Night'. Preserve the
                  original composition of buildings and cars, but
                  render all elements with swirling, impasto
                  brushstrokes and a dramatic palette of deep blues
                  and bright yellows.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("city_style_transfer.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/city.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
    { text: "Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("city_style_transfer.png", buffer);
      console.log("Image saved as city_style_transfer.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/city.png"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
    genai.NewPartFromText("Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "city_style_transfer.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

REST

IMG_PATH=/path/to/your/city.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            },
            {\"text\": \"Transform the provided photograph of a modern city street at night into the artistic style of Vincent van Gogh's 'Starry Night'. Preserve the original composition of buildings and cars, but render all elements with swirling, impasto brushstrokes and a dramatic palette of deep blues and bright yellows.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > city_style_transfer.png

Giriş

Çıkış

Kalabalık bir şehir caddesinin fotogerçekçi ve yüksek çözünürlüklü fotoğrafı...
Kalabalık bir şehir caddesinin fotoğraf gerçekliğinde ve yüksek çözünürlüklü fotoğrafı...
Gece çekilmiş modern bir şehir sokağının fotoğrafını...
Gece çekilmiş modern bir şehir sokağının fotoğrafını dönüştür...

4. Gelişmiş kompozisyon: Birden fazla görüntüyü birleştirme

Yeni bir kompozit sahne oluşturmak için bağlam olarak birden fazla resim sağlayın. Bu özellik, ürün maketleri veya yaratıcı kolajlar için idealdir.

Şablon

Create a new image by combining the elements from the provided images. Take
the [element from image 1] and place it with/on the [element from image 2].
The final image should be a [description of the final scene].

İstem

"Create a professional e-commerce fashion photo. Take the blue floral dress
from the first image and let the woman from the second image wear it.
Generate a realistic, full-body shot of the woman wearing the dress, with
the lighting and shadows adjusted to match the outdoor environment."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompts:
# 1. Dress: "A professionally shot photo of a blue floral summer dress on a plain white background, ghost mannequin style."
# 2. Model: "Full-body shot of a woman with her hair in a bun, smiling, standing against a neutral grey studio background."
dress_image = Image.open('/path/to/your/dress.png')
model_image = Image.open('/path/to/your/model.png')

text_input = """Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[dress_image, model_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("fashion_ecommerce_shot.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class AdvancedComposition {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/dress.png")),
                  "image/png"),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/model.png")),
                  "image/png"),
              Part.fromText("""
                  Create a professional e-commerce fashion photo.
                  Take the blue floral dress from the first image and
                  let the woman from the second image wear it. Generate
                  a realistic, full-body shot of the woman wearing the
                  dress, with the lighting and shadows adjusted to
                  match the outdoor environment.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("fashion_ecommerce_shot.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath1 = "/path/to/your/dress.png";
  const imageData1 = fs.readFileSync(imagePath1);
  const base64Image1 = imageData1.toString("base64");
  const imagePath2 = "/path/to/your/model.png";
  const imageData2 = fs.readFileSync(imagePath2);
  const base64Image2 = imageData2.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image1,
      },
    },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image2,
      },
    },
    { text: "Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("fashion_ecommerce_shot.png", buffer);
      console.log("Image saved as fashion_ecommerce_shot.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imgData1, _ := os.ReadFile("/path/to/your/dress.png")
  imgData2, _ := os.ReadFile("/path/to/your/model.png")

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData1,
      },
    },
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData2,
      },
    },
    genai.NewPartFromText("Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "fashion_ecommerce_shot.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

REST

IMG_PATH1=/path/to/your/dress.png
IMG_PATH2=/path/to/your/model.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG1_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH1" 2>&1)
IMG2_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH2" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG1_BASE64\"
              }
            },
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG2_BASE64\"
              }
            },
            {\"text\": \"Create a professional e-commerce fashion photo. Take the blue floral dress from the first image and let the woman from the second image wear it. Generate a realistic, full-body shot of the woman wearing the dress, with the lighting and shadows adjusted to match the outdoor environment.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > fashion_ecommerce_shot.png

Giriş 1

Giriş 2

Çıkış

Mavi çiçekli bir yazlık elbisenin profesyonelce çekilmiş fotoğrafı...
Mavi çiçek desenli bir yazlık elbisenin profesyonelce çekilmiş fotoğrafı...
Saçları topuz yapılmış bir kadının tam vücut fotoğrafı...
Saçları topuz yapılmış bir kadının tam vücut fotoğrafı...
Profesyonel bir e-ticaret moda fotoğrafı oluşturun...
Profesyonel bir e-ticaret moda fotoğrafı oluştur...

5. Yüksek doğruluk oranıyla ayrıntı koruma

Düzenleme sırasında önemli ayrıntıların (ör. yüz veya logo) korunmasını sağlamak için düzenleme isteğinizle birlikte bu ayrıntıları ayrıntılı bir şekilde açıklayın.

Şablon

Using the provided images, place [element from image 2] onto [element from
image 1]. Ensure that the features of [element from image 1] remain
completely unchanged. The added element should [description of how the
element should integrate].

İstem

"Take the first image of the woman with brown hair, blue eyes, and a neutral
expression. Add the logo from the second image onto her black t-shirt.
Ensure the woman's face and features remain completely unchanged. The logo
should look like it's naturally printed on the fabric, following the folds
of the shirt."

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

# Base image prompts:
# 1. Woman: "A professional headshot of a woman with brown hair and blue eyes, wearing a plain black t-shirt, against a neutral studio background."
# 2. Logo: "A simple, modern logo with the letters 'G' and 'A' in a white circle."
woman_image = Image.open('/path/to/your/woman.png')
logo_image = Image.open('/path/to/your/logo.png')
text_input = """Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt."""

# Generate an image from a text prompt
response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[woman_image, logo_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("woman_with_logo.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class HighFidelity {
  public static void main(String[] args) throws IOException {

    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-2.5-flash-image",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/woman.png")),
                  "image/png"),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/logo.png")),
                  "image/png"),
              Part.fromText("""
                  Take the first image of the woman with brown hair,
                  blue eyes, and a neutral expression. Add the logo
                  from the second image onto her black t-shirt.
                  Ensure the woman's face and features remain
                  completely unchanged. The logo should look like
                  it's naturally printed on the fabric, following
                  the folds of the shirt.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("woman_with_logo.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath1 = "/path/to/your/woman.png";
  const imageData1 = fs.readFileSync(imagePath1);
  const base64Image1 = imageData1.toString("base64");
  const imagePath2 = "/path/to/your/logo.png";
  const imageData2 = fs.readFileSync(imagePath2);
  const base64Image2 = imageData2.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image1,
      },
    },
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image2,
      },
    },
    { text: "Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
  });
  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("woman_with_logo.png", buffer);
      console.log("Image saved as woman_with_logo.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imgData1, _ := os.ReadFile("/path/to/your/woman.png")
  imgData2, _ := os.ReadFile("/path/to/your/logo.png")

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData1,
      },
    },
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData2,
      },
    },
    genai.NewPartFromText("Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash-image",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "woman_with_logo.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

REST

IMG_PATH1=/path/to/your/woman.png
IMG_PATH2=/path/to/your/logo.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG1_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH1" 2>&1)
IMG2_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH2" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-image:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG1_BASE64\"
              }
            },
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG2_BASE64\"
              }
            },
            {\"text\": \"Take the first image of the woman with brown hair, blue eyes, and a neutral expression. Add the logo from the second image onto her black t-shirt. Ensure the woman's face and features remain completely unchanged. The logo should look like it's naturally printed on the fabric, following the folds of the shirt.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > woman_with_logo.png

Giriş 1

Giriş 2

Çıkış

Kahverengi saçlı ve mavi gözlü bir kadının profesyonel vesikalık fotoğrafı...
Kahverengi saçlı ve mavi gözlü bir kadının profesyonel portre fotoğrafı...
&quot;G&quot; ve &quot;A&quot; harflerinin yer aldığı sade ve modern bir logo...
"G" ve "A" harflerini içeren basit ve modern bir logo...
Kahverengi saçlı, mavi gözlü ve ifadesiz bir kadının ilk resmini alın...
Kahverengi saçlı, mavi gözlü ve ifadesiz bir kadının ilk resmini çek...

6. Bir şeyi hayata geçirmek

Kaba bir taslak veya çizim yükleyip modelden bunu tamamlanmış bir resme dönüştürmesini isteyin.

Şablon

Turn this rough [medium] sketch of a [subject] into a [style description]
photo. Keep the [specific features] from the sketch but add [new details/materials].

İstem

"Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting."

Python

from google import genai
from PIL import Image

client = genai.Client()

# Base image prompt: "A rough pencil sketch of a flat sports car on white paper."
sketch_image = Image.open('/path/to/your/car_sketch.png')
text_input = """Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting."""

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[sketch_image, text_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("car_photo.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class BringToLife {
  public static void main(String[] args) throws IOException {
    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/car_sketch.png")),
                  "image/png"),
              Part.fromText("""
                  Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting.
                  """)),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("car_photo.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/car_sketch.png";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    {
      inlineData: {
        mimeType: "image/png",
        data: base64Image,
      },
    },
    { text: "Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting." },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
  });
  for (const part of response.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("car_photo.png", buffer);
      console.log("Image saved as car_photo.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imgData, _ := os.ReadFile("/path/to/your/car_sketch.png")

  parts := []*genai.Part{
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/png",
        Data:     imgData,
      },
    },
    genai.NewPartFromText("Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-3-pro-image-preview",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "car_photo.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

REST

IMG_PATH=/path/to/your/car_sketch.png

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {
              \"inline_data\": {
                \"mime_type\":\"image/png\",
                \"data\": \"$IMG_BASE64\"
              }
            },
            {\"text\": \"Turn this rough pencil sketch of a futuristic car into a polished photo of the finished concept car in a showroom. Keep the sleek lines and low profile from the sketch but add metallic blue paint and neon rim lighting.\"}
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > car_photo.png

Giriş

Çıkış

Araba çizimi
Arabanın kaba taslağı
Nihai konsept arabayı gösteren çıktı
Arabanın gösterişli fotoğrafı

7. Karakter tutarlılığı: 360 görünüm

Farklı açılar için yinelemeli istemler vererek bir karakterin 360 derece görünümlerini oluşturabilirsiniz. En iyi sonuçlar için tutarlılığı korumak amacıyla, daha önce oluşturulan resimleri sonraki istemlere ekleyin. Karmaşık pozlar için istediğiniz pozun referans resmini ekleyin.

Şablon

A studio portrait of [person] against [background], [looking forward/in profile looking right/etc.]

İstem

A studio portrait of this man against white, in profile looking right

Python

from google import genai
from google.genai import types
from PIL import Image

client = genai.Client()

image_input = Image.open('/path/to/your/man_in_white_glasses.jpg')
text_input = """A studio portrait of this man against white, in profile looking right"""

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[text_input, image_input],
)

for part in response.parts:
    if part.text is not None:
        print(part.text)
    elif part.inline_data is not None:
        image = part.as_image()
        image.save("man_right_profile.png")

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class CharacterConsistency {
  public static void main(String[] args) throws IOException {
    try (Client client = new Client()) {
      GenerateContentConfig config = GenerateContentConfig.builder()
          .responseModalities("TEXT", "IMAGE")
          .build();

      GenerateContentResponse response = client.models.generateContent(
          "gemini-3-pro-image-preview",
          Content.fromParts(
              Part.fromText("""
                  A studio portrait of this man against white, in profile looking right
                  """),
              Part.fromBytes(
                  Files.readAllBytes(
                      Path.of("/path/to/your/man_in_white_glasses.jpg")),
                  "image/jpeg")),
          config);

      for (Part part : response.parts()) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().isPresent()) {
          var blob = part.inlineData().get();
          if (blob.data().isPresent()) {
            Files.write(Paths.get("man_right_profile.png"), blob.data().get());
          }
        }
      }
    }
  }
}

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

async function main() {

  const ai = new GoogleGenAI({});

  const imagePath = "/path/to/your/man_in_white_glasses.jpg";
  const imageData = fs.readFileSync(imagePath);
  const base64Image = imageData.toString("base64");

  const prompt = [
    { text: "A studio portrait of this man against white, in profile looking right" },
    {
      inlineData: {
        mimeType: "image/jpeg",
        data: base64Image,
      },
    },
  ];

  const response = await ai.models.generateContent({
    model: "gemini-3-pro-image-preview",
    contents: prompt,
  });
  for (const part of response.parts) {
    if (part.text) {
      console.log(part.text);
    } else if (part.inlineData) {
      const imageData = part.inlineData.data;
      const buffer = Buffer.from(imageData, "base64");
      fs.writeFileSync("man_right_profile.png", buffer);
      console.log("Image saved as man_right_profile.png");
    }
  }
}

main();

Go

package main

import (
  "context"
  "fmt"
  "log"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/your/man_in_white_glasses.jpg"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
    genai.NewPartFromText("A studio portrait of this man against white, in profile looking right"),
    &genai.Part{
      InlineData: &genai.Blob{
        MIMEType: "image/jpeg",
        Data:     imgData,
      },
    },
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-3-pro-image-preview",
      contents,
  )

  for _, part := range result.Candidates[0].Content.Parts {
      if part.Text != "" {
          fmt.Println(part.Text)
      } else if part.InlineData != nil {
          imageBytes := part.InlineData.Data
          outputFilename := "man_right_profile.png"
          _ = os.WriteFile(outputFilename, imageBytes, 0644)
      }
  }
}

REST

IMG_PATH=/path/to/your/man_in_white_glasses.jpg

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi

IMG_BASE64=$(base64 "$B64FLAGS" "$IMG_PATH" 2>&1)

curl -X POST \
  "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-image-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -d "{
      \"contents\": [{
        \"parts\":[
            {\"text\": \"A studio portrait of this man against white, in profile looking right\"},
            {
              \"inline_data\": {
                \"mime_type\":\"image/jpeg\",
                \"data\": \"$IMG_BASE64\"
              }
            }
        ]
      }]
    }"  \
  | grep -o '"data": "[^"]*"' \
  | cut -d'"' -f4 \
  | base64 --decode > man_right_profile.png

Giriş

Çıkış 1

Çıkış 2

Beyaz gözlüklü bir adamın orijinal girişi
Orijinal resim
Beyaz gözlüklü bir adamın sağa bakarkenki görüntüsü
Beyaz gözlüklü ve sağa bakan adam
Beyaz gözlüklü bir adamın ileriye doğru baktığı görsel
Beyaz gözlüklü adam ileriye bakıyor

En İyi Uygulamalar

Sonuçlarınızı iyi seviyeden mükemmel seviyeye taşımak için bu profesyonel stratejileri iş akışınıza dahil edin.

  • Çok Ayrıntılı Olun: Ne kadar çok ayrıntı verirseniz o kadar fazla kontrol sahibi olursunuz. "Fantezi zırh" yerine "gümüş yaprak desenleriyle kazınmış, yüksek yakalı ve şahin kanatları şeklinde omuzlukları olan süslü elf zırhı" gibi bir açıklama yapın.
  • Bağlam ve Amaç Sağlama: Resmin amacını açıklayın. Modelin bağlamı anlaması, nihai çıktıyı etkiler. Örneğin, "Üst düzey, minimalist bir cilt bakımı markası için logo oluştur" istemi, yalnızca "Logo oluştur" istemine kıyasla daha iyi sonuçlar verir.
  • Tekrar edin ve iyileştirin: İlk denemede mükemmel bir resim elde etmeyi beklemeyin. Küçük değişiklikler yapmak için modelin etkileşimli yapısından yararlanın. "Bu harika, ancak ışığı biraz daha sıcak yapabilir misin?" veya "Her şeyi aynı tut ama karakterin ifadesini daha ciddi olacak şekilde değiştir" gibi istemlerle devam edin.
  • Adım adım talimatlar kullanın: Çok sayıda öğe içeren karmaşık sahneler için isteminizi adımlara ayırın. "Öncelikle şafak vakti sakin ve sisli bir orman arka planı oluştur. Ardından, ön plana yosun kaplı eski bir taş sunak ekleyin. Son olarak, sunakın üzerine tek bir parlayan kılıç yerleştirin."
  • "Anlamsal Olumsuz İstemler" kullanın: "Araba yok" demek yerine, istediğiniz sahneyi olumlu bir şekilde tanımlayın: "Trafik işareti olmayan, boş ve ıssız bir sokak."
  • Kamerayı Kontrol Etme: Kompozisyonu kontrol etmek için fotoğraf ve sinema dilini kullanın. wide-angle shot, macro shot, low-angle perspective gibi terimler.

Sınırlamalar

  • En iyi performans için şu dilleri kullanın: EN, es-MX, ja-JP, zh-CN, hi-IN.
  • Görüntü oluşturma, ses veya video girişlerini desteklemez.
  • Model, kullanıcının açıkça istediği görüntü çıkışlarının tam sayısını her zaman karşılamaz.
  • Model, giriş olarak en fazla 3 resimle en iyi şekilde çalışır.
  • Gemini, bir resim için metin oluştururken önce metni oluşturup ardından metni içeren bir resim istemeniz durumunda en iyi şekilde çalışır.
  • Üretilen tüm görüntülerde SynthID filigranı bulunur.

İsteğe bağlı yapılandırmalar

İsteğe bağlı olarak, generate_content çağrılarının config alanında modelin çıkışının yanıt biçimlerini ve en-boy oranını yapılandırabilirsiniz.

Çıkış türleri

Model, varsayılan olarak metin ve resim yanıtları (ör. response_modalities=['Text', 'Image']) döndürür. response_modalities=['Image'] kullanarak yanıtı yalnızca resim döndürecek şekilde yapılandırabilirsiniz.

Python

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt],
    config=types.GenerateContentConfig(
        response_modalities=['Image']
    )
)

JavaScript

const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
    config: {
        responseModalities: ['Image']
    }
  });

Go

result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.5-flash-image",
    genai.Text("Create a picture of a nano banana dish in a " +
                " fancy restaurant with a Gemini theme"),
    &genai.GenerateContentConfig{
        ResponseModalities: "Image",
    },
  )

Java

response = client.models.generateContent(
    "gemini-2.5-flash-image",
    prompt,
    GenerateContentConfig.builder()
        .responseModalities("IMAGE")
        .build());

REST

-d '{
  "contents": [{
    "parts": [
      {"text": "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}
    ]
  }],
  "generationConfig": {
    "responseModalities": ["Image"]
  }
}' \

En boy oranları

Model, varsayılan olarak çıkış resminin boyutunu giriş resminizin boyutuyla eşleştirir veya 1:1 kareler oluşturur. Yanıt isteğindeki image_config altında yer alan aspect_ratio alanını kullanarak çıkış resminin en boy oranını kontrol edebilirsiniz. Bu alan aşağıda gösterilmiştir:

Python

response = client.models.generate_content(
    model="gemini-2.5-flash-image",
    contents=[prompt],
    config=types.GenerateContentConfig(
        image_config=types.ImageConfig(
            aspect_ratio="16:9",
        )
    )
)

JavaScript

const response = await ai.models.generateContent({
    model: "gemini-2.5-flash-image",
    contents: prompt,
    config: {
      imageConfig: {
        aspectRatio: "16:9",
      },
    }
  });

Go

result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.5-flash-image",
    genai.Text("Create a picture of a nano banana dish in a " +
                " fancy restaurant with a Gemini theme"),
    &genai.GenerateContentConfig{
        ImageConfig: &genai.ImageConfig{
          AspectRatio: "16:9",
        },
    }
  )

Java

response = client.models.generateContent(
    "gemini-2.5-flash-image",
    prompt,
    GenerateContentConfig.builder()
        .imageConfig(ImageConfig.builder()
            .aspectRatio("16:9")
            .build())
        .build());

REST

-d '{
  "contents": [{
    "parts": [
      {"text": "Create a picture of a nano banana dish in a fancy restaurant with a Gemini theme"}
    ]
  }],
  "generationConfig": {
    "imageConfig": {
      "aspectRatio": "16:9"
    }
  }
}' \

Kullanılabilen farklı oranlar ve oluşturulan resmin boyutu aşağıdaki tablolarda listelenmiştir:

Gemini 2.5 Flash Image

En boy oranı Çözünürlük Token'lar
1:1 1024x1024 1290
2:3 832x1248 1290
3:2 1248x832 1290
3:4 864x1184 1290
4:3 1184x864 1290
4:5 896x1152 1290
5:4 1152x896 1290
9:16 768x1344 1290
16:9 1344x768 1290
21:9 1536x672 1290

Gemini 3 Pro Görüntü Önizlemesi

En boy oranı 1K çözünürlük 1.000 Token 2K çözünürlük 2K Jetonları 4K çözünürlük 4K Jetonları
1:1 1024x1024 1210 2048x2048 1210 4096x4096 2000
2:3 848x1264 1210 1696x2528 1210 3392x5056 2000
3:2 1264x848 1210 2528x1696 1210 5056x3392 2000
3:4 896x1200 1210 1792x2400 1210 3584x4800 2000
4:3 1200x896 1210 2400x1792 1210 4800x3584 2000
4:5 928x1152 1210 1856x2304 1210 3712x4608 2000
5:4 1152x928 1210 2304x1856 1210 4608x3712 2000
9:16 768x1376 1210 1536x2752 1210 3072x5504 2000
16:9 1376x768 1210 2752x1536 1210 5504x3072 2000
21:9 1584x672 1210 3168x1344 1210 6336x2688 2000

Model seçimi

Belirli kullanım alanınıza en uygun modeli seçin.

  • Gemini 3 Pro Görüntü Önizleme (Nano Banana Pro Önizleme), profesyonel öğe üretimi ve karmaşık talimatlar için tasarlanmıştır. Bu modelde, Google Arama kullanılarak gerçek dünyayla ilgili temel bilgiler sunulur, oluşturma işleminden önce kompozisyonu iyileştiren varsayılan bir "Düşünme" süreci uygulanır ve 4K çözünürlüğe kadar görüntüler oluşturulabilir.

  • Gemini 2.5 Flash Image (Nano Banana), hız ve verimlilik için tasarlanmıştır. Bu model, yüksek hacimli ve düşük gecikmeli görevler için optimize edilmiştir ve 1.024 piksel çözünürlükte görüntüler oluşturur.

Imagen'i ne zaman kullanmalısınız?

Gemini'ın yerleşik görüntü üretme özelliklerini kullanmanın yanı sıra Gemini API aracılığıyla özel görüntü üretme modelimiz Imagen'e de erişebilirsiniz.

Özellik Imagen Gemini Native Image
Güçlü yönler Model, görüntü üretme konusunda uzmanlaşmıştır. Varsayılan öneri.
Benzersiz esneklik, bağlamsal anlayış ve basit, maskesiz düzenleme. Çok adımlı etkileşimli düzenleme konusunda benzersiz bir yeteneğe sahiptir.
Kullanılabilirlik Genel kullanıma sunuldu Önizleme (Üretimde kullanıma izin verilir)
Gecikme Düşük Neredeyse gerçek zamanlı performans için optimize edilmiştir. Daha yüksek. Gelişmiş özellikleri için daha fazla hesaplama yapılması gerekir.
Maliyet Özel görevler için uygun maliyetlidir. 0,02 ABD doları/resim ila 0,12 ABD doları/resim Jeton tabanlı fiyatlandırma. Resim çıkışı için 1 milyon jeton başına 30 ABD doları (Resim çıkışı, resim başına 1.290 jeton olacak şekilde jetonlaştırılır ve 1.024x1.024 piksele kadar desteklenir.)
Önerilen görevler
  • Görüntü kalitesi, fotoğraf gerçekliği, sanatsal ayrıntı veya belirli stiller (ör. izlenimcilik, anime) en önemli önceliklerdir.
  • Markalama, stil veya logo ve ürün tasarımları oluşturma
  • Gelişmiş yazım veya tipografi oluşturma
  • Metin ve görüntüleri sorunsuz bir şekilde harmanlamak için arasına resim eklenmiş metin ve görüntü üretme
  • Tek bir istemle birden fazla resimdeki reklam öğelerini birleştirin.
  • Görüntülerde çok ayrıntılı düzenlemeler yapın, basit dil komutlarıyla tek tek öğeleri değiştirin ve bir görüntü üzerinde yinelemeli olarak çalışın.
  • Orijinal öznenin şeklini ve ayrıntılarını korurken bir resimdeki belirli bir tasarımı veya dokuyu başka bir resme uygulayın.

Imagen ile görüntü üretmeye başlarken Imagen 4'ü kullanmanız önerilir. Gelişmiş kullanım alanları için veya en iyi görüntü kalitesine ihtiyacınız olduğunda Imagen 4 Ultra'yı seçin (aynı anda yalnızca bir görüntü oluşturulabileceğini unutmayın).

Sırada ne var?

  • Daha fazla örnek ve kod örneğini cookbook rehberinde bulabilirsiniz.
  • Gemini API ile nasıl video oluşturacağınızı öğrenmek için Veo kılavuzuna göz atın.
  • Gemini modelleri hakkında daha fazla bilgi edinmek için Gemini modelleri başlıklı makaleyi inceleyin.