圖像理解

Gemini 模型從一開始就建構於多模態的基礎上,因此可提供強大的內建圖像理解功能。這樣一來,您就能執行圖片標題、分類、視覺問答、物件偵測和區隔等任務,而無須訓練專門的 ML 模型。

本指南將介紹圖像輸入內容和常見的圖像理解工作。如需其他模式,請參閱影片音訊指南。

將圖片傳送至 Gemini

您可以透過兩種方式將圖片做為 Gemini 的輸入內容:

傳遞內嵌圖片資料

您可以在要求中傳遞內嵌圖片資料至 generateContent。您可以將圖片資料以 Base64 編碼字串的形式提供,也可以直接讀取本機檔案 (視語言而定)。

以下範例說明如何從本機檔案讀取圖片,並將圖片傳遞至 generateContent API 進行處理。

Python

  from google.genai import types

  with open('path/to/small-sample.jpg', 'rb') as f:
      image_bytes = f.read()

  response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
      types.Part.from_bytes(
        data=image_bytes,
        mime_type='image/jpeg',
      ),
      'Caption this image.'
    ]
  )

  print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const base64ImageFile = fs.readFileSync("path/to/small-sample.jpg", {
  encoding: "base64",
});

const contents = [
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile,
    },
  },
  { text: "Caption this image." },
];

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: contents,
});
console.log(response.text);

Go

bytes, _ := os.ReadFile("path/to/small-sample.jpg")

parts := []*genai.Part{
  genai.NewPartFromBytes(bytes, "image/jpeg"),
  genai.NewPartFromText("Caption this image."),
}

contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

result, _ := client.Models.GenerateContent(
  ctx,
  "gemini-2.0-flash",
  contents,
  nil,
)

fmt.Println(result.Text())

REST

IMG_PATH="/path/to/your/image1.jpg"

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
    "contents": [{
    "parts":[
        {
            "inline_data": {
            "mime_type":"image/jpeg",
            "data": "'"$(base64 $B64FLAGS $IMG_PATH)"'"
            }
        },
        {"text": "Caption this image."},
    ]
    }]
}' 2> /dev/null

您也可以從網址擷取圖片、將圖片轉換為位元組,然後傳遞至 generateContent,如以下範例所示。

Python

from google import genai
from google.genai import types

import requests

image_path = "https://goo.gle/instrument-img"
image_bytes = requests.get(image_path).content
image = types.Part.from_bytes(
  data=image_bytes, mime_type="image/jpeg"
)

client = genai.Client(api_key="GOOGLE_API_KEY")
response = client.models.generate_content(
    model="gemini-2.0-flash-exp",
    contents=["What is this image?", image],
)

print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

async function main() {
  const ai = new GoogleGenAI({ apiKey: process.env.GOOGLE_API_KEY });

  const imageUrl = "https://goo.gle/instrument-img";

  const response = await fetch(imageUrl);
  const imageArrayBuffer = await response.arrayBuffer();
  const base64ImageData = Buffer.from(imageArrayBuffer).toString('base64');

  const result = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: [
    {
      inlineData: {
        mimeType: 'image/jpeg',
        data: base64ImageData,
      },
    },
    { text: "Caption this image." }
  ],
  });
  console.log(result.text);
}

main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "io"
  "net/http"
  "google.golang.org/genai"
)

func main() {
  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
      APIKey:  os.Getenv("GOOGLE_API_KEY"),
      Backend: genai.BackendGeminiAPI,
  })

  // Download the image.
  imageResp, _ := http.Get("https://goo.gle/instrument-img")

  imageBytes, _ := io.ReadAll(imageResp.Body)

  parts := []*genai.Part{
    genai.NewPartFromBytes(imageBytes, "image/jpeg"),
    genai.NewPartFromText("Caption this image."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.0-flash",
    contents,
    nil,
  )

  fmt.Println(result.Text())
}

REST

IMG_URL="https://goo.gle/instrument-img"

MIME_TYPE=$(curl -sIL "$IMG_URL" | grep -i '^content-type:' | awk -F ': ' '{print $2}' | sed 's/\r$//' | head -n 1)
if [[ -z "$MIME_TYPE" || ! "$MIME_TYPE" == image/* ]]; then
  MIME_TYPE="image/jpeg"
fi

# Check for macOS
if [[ "$(uname)" == "Darwin" ]]; then
  IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -b 0)
elif [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  IMAGE_B64=$(curl -sL "$IMG_URL" | base64)
else
  IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -w0)
fi

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {
              "inline_data": {
                "mime_type":"'"$MIME_TYPE"'",
                "data": "'"$IMAGE_B64"'"
              }
            },
            {"text": "Caption this image."}
        ]
      }]
    }' 2> /dev/null

使用 File API 上傳圖片

如果是大型檔案,或需要重複使用相同的圖片檔案,請使用 Files API。以下程式碼會上傳圖片檔案,然後在對 generateContent 的呼叫中使用該檔案。詳情請參閱 Files API 指南

Python

from google import genai

client = genai.Client(api_key="GOOGLE_API_KEY")

my_file = client.files.upload(file="path/to/sample.jpg")

response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=[my_file, "Caption this image."],
)

print(response.text)

JavaScript

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

async function main() {
  const myfile = await ai.files.upload({
    file: "path/to/sample.jpg",
    config: { mimeType: "image/jpeg" },
  });

  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: createUserContent([
      createPartFromUri(myfile.uri, myfile.mimeType),
      "Caption this image.",
    ]),
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {
  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
    APIKey:  os.Getenv("GOOGLE_API_KEY"),
    Backend: genai.BackendGeminiAPI,
  })

  uploadedFile, _ := client.Files.UploadFromPath(ctx, "path/to/sample.jpg", nil)

  parts := []*genai.Part{
      genai.NewPartFromText("Caption this image."),
      genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
  }

  contents := []*genai.Content{
      genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.0-flash",
      contents,
      nil,
  )

  fmt.Println(result.Text())
}

REST

IMAGE_PATH="path/to/sample.jpg"
MIME_TYPE=$(file -b --mime-type "${IMAGE_PATH}")
NUM_BYTES=$(wc -c < "${IMAGE_PATH}")
DISPLAY_NAME=IMAGE

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "https://generativelanguage.googleapis.com/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${IMAGE_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq -r ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"file_data":{"mime_type": "'"${MIME_TYPE}"'", "file_uri": "'"${file_uri}"'"}},
          {"text": "Caption this image."}]
        }]
      }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

使用多張圖片提示

您可以在 contents 陣列中加入多個圖片 Part 物件,在單一提示中提供多張圖片。這些資料可以是內嵌資料 (本機檔案或網址) 和 File API 參照的組合。

Python

from google import genai
from google.genai import types

client = genai.Client(api_key="GOOGLE_API_KEY")

# Upload the first image
image1_path = "path/to/image1.jpg"
uploaded_file = client.files.upload(file=image1_path)

# Prepare the second image as inline data
image2_path = "path/to/image2.png"
with open(image2_path, 'rb') as f:
    img2_bytes = f.read()

# Create the prompt with text and multiple images
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=[
        "What is different between these two images?",
        uploaded_file,  # Use the uploaded file reference
        types.Part.from_bytes(
            data=img2_bytes,
            mime_type='image/png'
        )
    ]
)

print(response.text)

JavaScript

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";
import * as fs from "node:fs";

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

async function main() {
  // Upload the first image
  const image1_path = "path/to/image1.jpg";
  const uploadedFile = await ai.files.upload({
    file: image1_path,
    config: { mimeType: "image/jpeg" },
  });

  // Prepare the second image as inline data
  const image2_path = "path/to/image2.png";
  const base64Image2File = fs.readFileSync(image2_path, {
    encoding: "base64",
  });

  // Create the prompt with text and multiple images
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: createUserContent([
      "What is different between these two images?",
      createPartFromUri(uploadedFile.uri, uploadedFile.mimeType),
      {
        inlineData: {
          mimeType: "image/png",
          data: base64Image2File,
        },
      },
    ]),
  });
  console.log(response.text);
}

await main();

Go

// Upload the first image
image1Path := "path/to/image1.jpg"
uploadedFile, _ := client.Files.UploadFromPath(ctx, image1Path, nil)

// Prepare the second image as inline data
image2Path := "path/to/image2.jpeg"
imgBytes, _ := os.ReadFile(image2Path)

parts := []*genai.Part{
  genai.NewPartFromText("What is different between these two images?"),
  genai.NewPartFromBytes(imgBytes, "image/jpeg"),
  genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
}

contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

result, _ := client.Models.GenerateContent(
  ctx,
  "gemini-2.0-flash",
  contents,
  nil,
)

fmt.Println(result.Text())

REST

# Upload the first image
IMAGE1_PATH="path/to/image1.jpg"
MIME1_TYPE=$(file -b --mime-type "${IMAGE1_PATH}")
NUM1_BYTES=$(wc -c < "${IMAGE1_PATH}")
DISPLAY_NAME1=IMAGE1

tmp_header_file1=upload-header1.tmp

curl "https://generativelanguage.googleapis.com/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header1.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM1_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME1_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME1}'}}" 2> /dev/null

upload_url1=$(grep -i "x-goog-upload-url: " "${tmp_header_file1}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file1}"

curl "${upload_url1}" \
  -H "Content-Length: ${NUM1_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${IMAGE1_PATH}" 2> /dev/null > file_info1.json

file1_uri=$(jq ".file.uri" file_info1.json)
echo file1_uri=$file1_uri

# Prepare the second image (inline)
IMAGE2_PATH="path/to/image2.png"
MIME2_TYPE=$(file -b --mime-type "${IMAGE2_PATH}")

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi
IMAGE2_BASE64=$(base64 $B64FLAGS $IMAGE2_PATH)

# Now generate content using both images
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "What is different between these two images?"},
          {"file_data":{"mime_type": "'"${MIME1_TYPE}"'", "file_uri": '$file1_uri'}},
          {
            "inline_data": {
              "mime_type":"'"${MIME2_TYPE}"'",
              "data": "'"$IMAGE2_BASE64"'"
            }
          }
        ]
      }]
    }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

物件偵測

從 Gemini 2.0 起,模型會進一步接受訓練,以便偵測圖片中的物件,並取得定界框座標。相對於圖片尺寸的座標,縮放至 [0, 1000]。您必須根據原始圖片大小縮小這些座標。

Python

from google import genai
from google.genai import types
from PIL import Image
import json

client = genai.Client(api_key="GOOGLE_API_KEY")
prompt = "Detect the all of the prominent items in the image. The box_2d should be [ymin, xmin, ymax, xmax] normalized to 0-1000."

image = Image.open("/path/to/image.png")

config = types.GenerateContentConfig(response_mime_type="application/json")
response = client.models.generate_content(model="gemini-2.0-flash",
                                          contents=[image, prompt],
                                          config=config)

width, height = image.size
bounding_boxes = json.loads(response.text)

converted_bounding_boxes = []
for bounding_box in bounding_boxes:
    abs_y1 = int(bounding_box["box_2d"][0]/1000 * height)
    abs_x1 = int(bounding_box["box_2d"][1]/1000 * width)
    abs_y2 = int(bounding_box["box_2d"][2]/1000 * height)
    abs_x2 = int(bounding_box["box_2d"][3]/1000 * width)
    converted_bounding_boxes.append([abs_x1, abs_y1, abs_x2, abs_y2])

print("Image size: ", width, height)
print("Bounding boxes:", converted_bounding_boxes)

如需更多範例,請查看下列食譜:

圖片區隔

從 Gemini 2.5 開始,模型不僅會偵測項目,還會區隔項目並提供輪廓遮罩。

模型會預測 JSON 清單,其中每個項目代表一個區隔遮罩。每個項目都有一個定界框 ("box_2d"),格式為 [y0, x0, y1, x1],其規範化座標介於 0 和 1000 之間,標籤 ("label") 可識別物件,最後是定界框內的區隔遮罩,以 base64 編碼的 png 為基礎,這是值介於 0 和 255 之間的機率圖。遮罩的大小必須與邊界框尺寸相符,然後以可信度門檻 (中點為 127) 進行二值化。

Python

from google import genai
from PIL import Image

import io
import os
import requests
from io import BytesIO

import dataclasses
import numpy as np
import base64

# Mask data type
@dataclasses.dataclass(frozen=True)
class SegmentationMask:
  # bounding box pixel coordinates (not normalized)
  y0: int # in [0..height - 1]
  x0: int # in [0..width - 1]
  y1: int # in [0..height - 1]
  x1: int # in [0..width - 1]
  mask: np.array # [img_height, img_width] with values 0..255
  label: str

# Parsing JSON output
def parse_json(json_output: str):
    # Parsing out the markdown fencing
    lines = json_output.splitlines()
    for i, line in enumerate(lines):
        if line == "```json":
            json_output = "\n".join(lines[i+1:])  # Remove everything before "```json"
            json_output = json_output.split("```")[0]  # Remove everything after the closing "```"
            break  # Exit the loop once "```json" is found
    return json_output

# Generates a list of segmentation masks from the model output
def parse_segmentation_masks(
    predicted_str: str, *, img_height: int, img_width: int
    ) -> list[SegmentationMask]:
  items = json.loads(parse_json(predicted_str))
  masks = []
  for item in items:
    raw_box = item["box_2d"]
    abs_y0 = int(item["box_2d"][0] / 1000 * img_height)
    abs_x0 = int(item["box_2d"][1] / 1000 * img_width)
    abs_y1 = int(item["box_2d"][2] / 1000 * img_height)
    abs_x1 = int(item["box_2d"][3] / 1000 * img_width)
    if abs_y0 >= abs_y1 or abs_x0 >= abs_x1:
      print("Invalid bounding box", item["box_2d"])
      continue
    label = item["label"]
    png_str = item["mask"]
    if not png_str.startswith("data:image/png;base64,"):
      print("Invalid mask")
      continue
    png_str = png_str.removeprefix("data:image/png;base64,")
    png_str = base64.b64decode(png_str)
    mask = Image.open(io.BytesIO(png_str))
    bbox_height = abs_y1 - abs_y0
    bbox_width = abs_x1 - abs_x0
    if bbox_height < 1 or bbox_width < 1:
      print("Invalid bounding box")
      continue
    mask = mask.resize((bbox_width, bbox_height), resample=Image.Resampling.BILINEAR)
    np_mask = np.zeros((img_height, img_width), dtype=np.uint8)
    np_mask[abs_y0:abs_y1, abs_x0:abs_x1] = mask
    masks.append(SegmentationMask(abs_y0, abs_x0, abs_y1, abs_x1, np_mask, label))
  return masks

prompt = """
  Give the segmentation masks for the wooden and glass items.
  Output a JSON list of segmentation masks where each entry contains the 2D
  bounding box in the key "box_2d", the segmentation mask in key "mask", and
  the text label in the key "label". Use descriptive labels.
"""
model = "gemini-2.5-pro-preview-06-05"
image ="path/to/image.png"

# Load and resize image
im = Image.open(BytesIO(open(image, "rb").read()))
im.thumbnail([1024,1024], Image.Resampling.LANCZOS)

# Run model to find segmentation masks
response = client.models.generate_content(
    model=model,
    contents=[prompt, im],
    config = types.GenerateContentConfig(
        temperature=0.5,
    )
)

# Check output
print(response.text)

# Get segmentation masks
print(parse_segmentation_masks(response.text, img_height=im.size[1], img_width=im.size[0]))

如需更詳細的範例,請參閱食譜指南中的區隔範例

支援的圖片格式

Gemini 支援下列圖片格式的 MIME 類型:

  • PNG - image/png
  • JPEG - image/jpeg
  • WEBP - image/webp
  • HEIC - image/heic
  • HEIF - image/heif

限制和重要技術資訊

  • 檔案上限:Gemini 2.5 Pro、2.0 Flash、1.5 Pro 和 1.5 Flash 每個要求最多支援 3,600 個圖片檔案。
  • 符記計算
    • Gemini 1.5 Flash 和 Gemini 1.5 Pro:如果兩個尺寸均小於 384 像素,則為 258 個符記。較大的圖片會以平鋪方式顯示 (最小圖塊 256 像素,最大 768 像素,並調整為 768x768 像素),每個圖塊的符記費用為 258 個。
    • Gemini 2.0 Flash 和 Gemini 2.5 Flash/Pro:如果兩個尺寸均小於 384 像素,則為 258 個符記。較大的圖片會分割成 768x768 像素的圖塊,每個圖塊的符記費用為 258 個。

提示與最佳做法

  • 確認圖片是否正確旋轉。
  • 使用清晰、不模糊的圖片。
  • 使用單張含文字圖片時,請將文字提示放在 contents 陣列中的圖片部分後方

後續步驟

本指南將說明如何上傳圖片檔案,並從圖片輸入內容產生文字輸出內容。如要進一步瞭解相關內容,請參閱下列資源:

  • Files API:進一步瞭解如何上傳及管理 Gemini 使用的檔案。
  • 系統指示:系統指示可讓您根據特定需求和用途,控制模型的行為。
  • 檔案提示策略:Gemini API 支援使用文字、圖片、音訊和影片資料提示,這也稱為多模態提示。
  • 安全指南:生成式 AI 模型有時會產生不預期的輸出內容,例如不準確、有偏見或令人反感的輸出內容。後續處理和人工評估是限制這類輸出內容造成危害風險的必要措施。