Gemini 2.5 Pro Experimental 和 Gemini 2.0 Flash Thinking Experimental 是採用內部「思考過程」產生回覆的模型。這個過程有助於提升推理能力,讓他們能夠解決複雜的工作。本指南說明如何使用具備思考功能的 Gemini 模型。
使用思考模型
具備思考能力的模型可在 Google AI Studio 和 Gemini API 中使用。請注意,思考過程會顯示在 Google AI Studio 中,但不會提供為 API 輸出內容的一部分。
傳送基本要求
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
prompt = "Explain the concept of Occam's Razor and provide a simple, everyday example."
response = client.models.generate_content(
model="gemini-2.5-pro-exp-03-25", # or gemini-2.0-flash-thinking-exp
contents=prompt
)
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const prompt = "Explain the concept of Occam's Razor and provide a simple, everyday example.";
const response = await ai.models.generateContent({
model: "gemini-2.5-pro-exp-03-25", // or gemini-2.0-flash-thinking-exp
contents: prompt,
});
console.log(response.text);
}
main();
// import packages here
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-2.5-pro-exp-03-25") // or gemini-2.0-flash-thinking-exp
resp, err := model.GenerateContent(ctx, genai.Text("Explain the concept of Occam's Razor and provide a simple, everyday example."))
if err != nil {
log.Fatal(err)
}
fmt.Println(resp.Text())
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-pro-exp-03-25:generateContent?key=$YOUR_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "Explain the concept of Occam\''s Razor and provide a simple, everyday example."
}
]
}
]
}'
```
多輪思考對話
如要考量先前的即時通訊記錄,可以使用多輪對話。
您可以使用 SDK 建立聊天工作階段,以便管理對話狀態。
from google import genai
client = genai.Client(api_key='GEMINI_API_KEY')
chat = client.aio.chats.create(
model='gemini-2.5-pro-exp-03-25', # or gemini-2.0-flash-thinking-exp
)
response = await chat.send_message('What is your name?')
print(response.text)
response = await chat.send_message('What did you just say before this?')
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const chat = ai.chats.create({
model: 'gemini-2.5-pro-exp-03-25' // or gemini-2.0-flash-thinking-exp
});
const response = await chat.sendMessage({
message: 'What is your name?'
});
console.log(response.text);
response = await chat.sendMessage({
message: 'What did you just say before this?'
});
console.log(response.text);
}
main();
後續步驟
- 在 Google AI Studio 試用 Gemini 2.5 Pro 實驗版。
- 進一步瞭解提示思考模型。
- 如要進一步瞭解 Gemini 2.5 Pro Experimental 和 Gemini Flash 2.0 Thinking,請參閱模型頁面。
- 請參閱Thinking Cookbook 中的更多範例。