Etkileşimler API'si (Beta), Gemini modelleri ve aracılarıyla etkileşim kurmak için kullanılan birleşik bir arayüzdür. Durum yönetimi, araç düzenleme ve uzun süren görevleri basitleştirir. API şemasına kapsamlı bir bakış için API Referansı'na bakın. Beta sürümü sırasında özellikler ve şemalar kullanımı engelleyen değişikliklere tabi olabilir. Hızlıca başlamak için Etkileşimler API hızlı başlangıç not defterini deneyin.
Aşağıdaki örnekte, Etkileşimler API'sinin bir metin istemiyle nasıl çağrılacağı gösterilmektedir.
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Tell me a short joke about programming."
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Tell me a short joke about programming.',
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Tell me a short joke about programming."
}'
Temel etkileşimler
Etkileşimler API'si, mevcut SDK'larımız aracılığıyla kullanılabilir. Modelle etkileşim kurmanın en basit yolu metin istemi sağlamaktır. input; dize, içerik nesneleri içeren bir liste veya roller ve içerik nesneleri içeren bir dönüş listesi olabilir.
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Tell me a short joke about programming."
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Tell me a short joke about programming.',
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Tell me a short joke about programming."
}'
Konuşma
Çok turlu görüşmeleri iki şekilde oluşturabilirsiniz:
- Önceki bir etkileşime referans vererek durum bilgili
- Tüm görüşme geçmişini sağlayarak durum bilgisiz şekilde
Durumlu görüşme
Bir sohbete devam etmek için önceki etkileşimden alınan id değerini id parametresine iletin.previous_interaction_id
Python
from google import genai
client = genai.Client()
# 1. First turn
interaction1 = client.interactions.create(
model="gemini-3-flash-preview",
input="Hi, my name is Phil."
)
print(f"Model: {interaction1.outputs[-1].text}")
# 2. Second turn (passing previous_interaction_id)
interaction2 = client.interactions.create(
model="gemini-3-flash-preview",
input="What is my name?",
previous_interaction_id=interaction1.id
)
print(f"Model: {interaction2.outputs[-1].text}")
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
// 1. First turn
const interaction1 = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Hi, my name is Phil.'
});
console.log(`Model: ${interaction1.outputs[interaction1.outputs.length - 1].text}`);
// 2. Second turn (passing previous_interaction_id)
const interaction2 = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'What is my name?',
previous_interaction_id: interaction1.id
});
console.log(`Model: ${interaction2.outputs[interaction2.outputs.length - 1].text}`);
REST
# 1. First turn
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Hi, my name is Phil."
}'
# 2. Second turn (Replace INTERACTION_ID with the ID from the previous interaction)
# curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
# -H "Content-Type: application/json" \
# -H "x-goog-api-key: $GEMINI_API_KEY" \
# -d '{
# "model": "gemini-3-flash-preview",
# "input": "What is my name?",
# "previous_interaction_id": "INTERACTION_ID"
# }'
Geçmiş durum bilgili etkileşimleri alma
Sohbetin önceki dönüşlerini almak için id etkileşimini kullanma.
Python
previous_interaction = client.interactions.get("<YOUR_INTERACTION_ID>")
print(previous_interaction)
JavaScript
const previous_interaction = await client.interactions.get("<YOUR_INTERACTION_ID>");
console.log(previous_interaction);
REST
curl -X GET "https://generativelanguage.googleapis.com/v1beta/interactions/<YOUR_INTERACTION_ID>" \
-H "x-goog-api-key: $GEMINI_API_KEY"
Durumsuz görüşme
Mesaj dizisi geçmişini istemci tarafında manuel olarak yönetebilirsiniz.
Python
from google import genai
client = genai.Client()
conversation_history = [
{
"role": "user",
"content": "What are the three largest cities in Spain?"
}
]
interaction1 = client.interactions.create(
model="gemini-3-flash-preview",
input=conversation_history
)
print(f"Model: {interaction1.outputs[-1].text}")
conversation_history.append({"role": "model", "content": interaction1.outputs})
conversation_history.append({
"role": "user",
"content": "What is the most famous landmark in the second one?"
})
interaction2 = client.interactions.create(
model="gemini-3-flash-preview",
input=conversation_history
)
print(f"Model: {interaction2.outputs[-1].text}")
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const conversationHistory = [
{
role: 'user',
content: "What are the three largest cities in Spain?"
}
];
const interaction1 = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: conversationHistory
});
console.log(`Model: ${interaction1.outputs[interaction1.outputs.length - 1].text}`);
conversationHistory.push({ role: 'model', content: interaction1.outputs });
conversationHistory.push({
role: 'user',
content: "What is the most famous landmark in the second one?"
});
const interaction2 = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: conversationHistory
});
console.log(`Model: ${interaction2.outputs[interaction2.outputs.length - 1].text}`);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": [
{
"role": "user",
"content": "What are the three largest cities in Spain?"
},
{
"role": "model",
"content": "The three largest cities in Spain are Madrid, Barcelona, and Valencia."
},
{
"role": "user",
"content": "What is the most famous landmark in the second one?"
}
]
}'
Çok formatlı özellikler
Resim anlama veya video oluşturma gibi çok formatlı kullanım alanlarında Interactions API'yi kullanabilirsiniz.
Çok formatlı anlama
Çok formatlı girişi base64 olarak kodlanmış veriler şeklinde satır içi olarak, daha büyük dosyalar için Files API'yi kullanarak veya uri alanına herkese açık bir bağlantı ileterek sağlayabilirsiniz. Aşağıdaki kod örneklerinde herkese açık URL yöntemi gösterilmektedir.
Görüntü anlama
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input=[
{"type": "text", "text": "Describe the image."},
{
"type": "image",
"uri": "YOUR_URL",
"mime_type": "image/png"
}
]
)
print(interaction.outputs[-1].text)
JavaScript
import {GoogleGenAI} from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: [
{type: 'text', text: 'Describe the image.'},
{
type: 'image',
uri: 'YOUR_URL',
mime_type: 'image/png'
}
]
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "gemini-3-flash-preview",
"input": [
{
"type": "text",
"text": "Describe the image."
},
{
"type": "image",
"uri": "YOUR_URL",
"mime_type": "image/png"
}
]
}'
Ses yorumlama
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input=[
{"type": "text", "text": "What does this audio say?"},
{
"type": "audio",
"uri": "YOUR_URL",
"mime_type": "audio/wav"
}
]
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: [
{ type: 'text', text: 'What does this audio say?' },
{
type: 'audio',
uri: 'YOUR_URL',
mime_type: 'audio/wav'
}
]
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": [
{"type": "text", "text": "What does this audio say?"},
{
"type": "audio",
"uri": "YOUR_URL",
"mime_type": "audio/wav"
}
]
}'
Video anlama
Python
from google import genai
client = genai.Client()
print("Analyzing video...")
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input=[
{"type": "text", "text": "What is happening in this video? Provide a timestamped summary."},
{
"type": "video",
"uri": "YOUR_URL",
"mime_type": "video/mp4"
}
]
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
console.log('Analyzing video...');
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: [
{ type: 'text', text: 'What is happening in this video? Provide a timestamped summary.' },
{
type: 'video',
uri: 'YOUR_URL',
mime_type: 'video/mp4'
}
]
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": [
{"type": "text", "text": "What is happening in this video?"},
{
"type": "video",
"uri": "YOUR_URL",
"mime_type": "video/mp4"
}
]
}'
Belge (PDF) anlama
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input=[
{"type": "text", "text": "What is this document about?"},
{
"type": "document",
"uri": "YOUR_URL",
"mime_type": "application/pdf"
}
]
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: [
{ type: 'text', text: 'What is this document about?' },
{
type: 'document',
uri: 'YOUR_URL',
mime_type: 'application/pdf'
}
],
});
console.log(interaction.outputs[0].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": [
{"type": "text", "text": "What is this document about?"},
{
"type": "document",
"uri": "YOUR_URL",
"mime_type": "application/pdf"
}
]
}'
Çok formatlı üretim
Çok formatlı çıkışlar oluşturmak için Interactions API'yi kullanabilirsiniz.
Görüntü üretme
Python
import base64
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-pro-image-preview",
input="Generate an image of a futuristic city.",
response_modalities=["IMAGE"]
)
for output in interaction.outputs:
if output.type == "image":
print(f"Generated image with mime_type: {output.mime_type}")
# Save the image
with open("generated_city.png", "wb") as f:
f.write(base64.b64decode(output.data))
JavaScript
import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-pro-image-preview',
input: 'Generate an image of a futuristic city.',
response_modalities: ['IMAGE']
});
for (const output of interaction.outputs) {
if (output.type === 'image') {
console.log(`Generated image with mime_type: ${output.mime_type}`);
// Save the image
fs.writeFileSync('generated_city.png', Buffer.from(output.data, 'base64'));
}
}
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-pro-image-preview",
"input": "Generate an image of a futuristic city.",
"response_modalities": ["IMAGE"]
}'
Görüntü çıkışını yapılandırma
En boy oranını ve çözünürlüğü kontrol etmek için generation_config içindeki image_config simgesini kullanarak oluşturulan görüntüleri özelleştirebilirsiniz.
| Parametre | Seçenekler | Açıklama |
|---|---|---|
aspect_ratio |
1:1, 2:3, 3:2, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9, 21:9 |
Çıkış resminin en-boy oranını kontrol eder. |
image_size |
1k, 2k, 4k |
Çıkış görüntüsünün çözünürlüğünü ayarlar. |
Python
import base64
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-pro-image-preview",
input="Generate an image of a futuristic city.",
generation_config={
"image_config": {
"aspect_ratio": "9:16",
"image_size": "2k"
}
}
)
for output in interaction.outputs:
if output.type == "image":
print(f"Generated image with mime_type: {output.mime_type}")
# Save the image
with open("generated_city.png", "wb") as f:
f.write(base64.b64decode(output.data))
JavaScript
import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-pro-image-preview',
input: 'Generate an image of a futuristic city.',
generation_config: {
image_config: {
aspect_ratio: '9:16',
image_size: '2k'
}
}
});
for (const output of interaction.outputs) {
if (output.type === 'image') {
console.log(`Generated image with mime_type: ${output.mime_type}`);
// Save the image
fs.writeFileSync('generated_city.png', Buffer.from(output.data, 'base64'));
}
}
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-pro-image-preview",
"input": "Generate an image of a futuristic city.",
"generation_config": {
"image_config": {
"aspect_ratio": "9:16",
"image_size": "2k"
}
}
}'
Konuşma üretme
Metin okuma (TTS) modelini kullanarak metinden doğal sesli konuşma oluşturun.
speech_config
parametresiyle ses, dil ve hoparlör ayarlarını yapılandırın.
Python
import base64
from google import genai
import wave
# Set up the wave file to save the output:
def wave_file(filename, pcm, channels=1, rate=24000, sample_width=2):
with wave.open(filename, "wb") as wf:
wf.setnchannels(channels)
wf.setsampwidth(sample_width)
wf.setframerate(rate)
wf.writeframes(pcm)
client = genai.Client()
interaction = client.interactions.create(
model="gemini-2.5-flash-preview-tts",
input="Say the following: WOOHOO This is so much fun!.",
response_modalities=["AUDIO"],
generation_config={
"speech_config": {
"language": "en-us",
"voice": "kore"
}
}
)
for output in interaction.outputs:
if output.type == "audio":
print(f"Generated audio with mime_type: {output.mime_type}")
# Save the audio as wave file to the current directory.
wave_file("generated_audio.wav", base64.b64decode(output.data))
JavaScript
import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';
import wav from 'wav';
async function saveWaveFile(
filename,
pcmData,
channels = 1,
rate = 24000,
sampleWidth = 2,
) {
return new Promise((resolve, reject) => {
const writer = new wav.FileWriter(filename, {
channels,
sampleRate: rate,
bitDepth: sampleWidth * 8,
});
writer.on('finish', resolve);
writer.on('error', reject);
writer.write(pcmData);
writer.end();
});
}
async function main() {
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
const client = new GoogleGenAI({apiKey: GEMINI_API_KEY});
const interaction = await client.interactions.create({
model: 'gemini-2.5-flash-preview-tts',
input: 'Say the following: WOOHOO This is so much fun!.',
response_modalities: ['AUDIO'],
generation_config: {
speech_config: {
language: "en-us",
voice: "kore"
}
}
});
for (const output of interaction.outputs) {
if (output.type === 'audio') {
console.log(`Generated audio with mime_type: ${output.mime_type}`);
const audioBuffer = Buffer.from(output.data, 'base64');
// Save the audio as wave file to the current directory
await saveWaveFile("generated_audio.wav", audioBuffer);
}
}
}
await main();
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash-preview-tts",
"input": "Say the following: WOOHOO This is so much fun!.",
"response_modalities": ["AUDIO"],
"generation_config": {
"speech_config": {
"language": "en-us",
"voice": "kore"
}
}
}' | jq -r '.outputs[] | select(.type == "audio") | .data' | base64 -d > generated_audio.pcm
# You may need to install ffmpeg.
ffmpeg -f s16le -ar 24000 -ac 1 -i generated_audio.pcm generated_audio.wav
Birden fazla konuşmacının yer aldığı konuşma üretimi
İstemde konuşmacı adlarını belirterek ve bunları speech_config içinde eşleştirerek birden fazla konuşmacıyla konuşma oluşturun.
İstemde konuşmacı adları yer almalıdır:
TTS the following conversation between Alice and Bob:
Alice: Hi Bob, how are you doing today?
Bob: I'm doing great, thanks for asking! How about you?
Alice: Fantastic! I just learned about the Gemini API.
Ardından speech_config cihazını eşleşen hoparlörlerle yapılandırın:
"generation_config": {
"speech_config": [
{"voice": "Zephyr", "speaker": "Alice", "language": "en-US"},
{"voice": "Puck", "speaker": "Bob", "language": "en-US"}
]
}
Temsilcisel yetenekler
Etkileşimler API'si, aracı oluşturmak ve bunlarla etkileşim kurmak için tasarlanmıştır. İşlev çağrısı, yerleşik araçlar, yapılandırılmış çıkışlar ve Model Context Protocol (MCP) desteği içerir.
Temsilciler
Karmaşık görevler için deep-research-pro-preview-12-2025 gibi özel aracıları kullanabilirsiniz. Gemini Deep Research Agent hakkında daha fazla bilgi edinmek için Deep Research kılavuzuna bakın.
Python
import time
from google import genai
client = genai.Client()
# 1. Start the Deep Research Agent
initial_interaction = client.interactions.create(
input="Research the history of the Google TPUs with a focus on 2025 and 2026.",
agent="deep-research-pro-preview-12-2025",
background=True
)
print(f"Research started. Interaction ID: {initial_interaction.id}")
# 2. Poll for results
while True:
interaction = client.interactions.get(initial_interaction.id)
print(f"Status: {interaction.status}")
if interaction.status == "completed":
print("\nFinal Report:\n", interaction.outputs[-1].text)
break
elif interaction.status in ["failed", "cancelled"]:
print(f"Failed with status: {interaction.status}")
break
time.sleep(10)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
// 1. Start the Deep Research Agent
const initialInteraction = await client.interactions.create({
input: 'Research the history of the Google TPUs with a focus on 2025 and 2026.',
agent: 'deep-research-pro-preview-12-2025',
background: true
});
console.log(`Research started. Interaction ID: ${initialInteraction.id}`);
// 2. Poll for results
while (true) {
const interaction = await client.interactions.get(initialInteraction.id);
console.log(`Status: ${interaction.status}`);
if (interaction.status === 'completed') {
console.log('\nFinal Report:\n', interaction.outputs[interaction.outputs.length - 1].text);
break;
} else if (['failed', 'cancelled'].includes(interaction.status)) {
console.log(`Failed with status: ${interaction.status}`);
break;
}
await new Promise(resolve => setTimeout(resolve, 10000));
}
REST
# 1. Start the Deep Research Agent
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"input": "Research the history of the Google TPUs with a focus on 2025 and 2026.",
"agent": "deep-research-pro-preview-12-2025",
"background": true
}'
# 2. Poll for results (Replace INTERACTION_ID with the ID from the previous interaction)
# curl -X GET "https://generativelanguage.googleapis.com/v1beta/interactions/INTERACTION_ID" \
# -H "x-goog-api-key: $GEMINI_API_KEY"
Araçlar ve işlev çağrısı
Bu bölümde, özel araçları tanımlamak için işlev çağrısının nasıl kullanılacağı ve Google'ın yerleşik araçlarının Interactions API'de nasıl kullanılacağı açıklanmaktadır.
İşlev çağırma
Python
from google import genai
client = genai.Client()
# 1. Define the tool
def get_weather(location: str):
"""Gets the weather for a given location."""
return f"The weather in {location} is sunny."
weather_tool = {
"type": "function",
"name": "get_weather",
"description": "Gets the weather for a given location.",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}
},
"required": ["location"]
}
}
# 2. Send the request with tools
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="What is the weather in Paris?",
tools=[weather_tool]
)
# 3. Handle the tool call
for output in interaction.outputs:
if output.type == "function_call":
print(f"Tool Call: {output.name}({output.arguments})")
# Execute tool
result = get_weather(**output.arguments)
# Send result back
interaction = client.interactions.create(
model="gemini-3-flash-preview",
previous_interaction_id=interaction.id,
input=[{
"type": "function_result",
"name": output.name,
"call_id": output.id,
"result": result
}]
)
print(f"Response: {interaction.outputs[-1].text}")
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
// 1. Define the tool
const weatherTool = {
type: 'function',
name: 'get_weather',
description: 'Gets the weather for a given location.',
parameters: {
type: 'object',
properties: {
location: { type: 'string', description: 'The city and state, e.g. San Francisco, CA' }
},
required: ['location']
}
};
// 2. Send the request with tools
let interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'What is the weather in Paris?',
tools: [weatherTool]
});
// 3. Handle the tool call
for (const output of interaction.outputs) {
if (output.type === 'function_call') {
console.log(`Tool Call: ${output.name}(${JSON.stringify(output.arguments)})`);
// Execute tool (Mocked)
const result = `The weather in ${output.arguments.location} is sunny.`;
// Send result back
interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
previous_interaction_id:interaction.id,
input: [{
type: 'function_result',
name: output.name,
call_id: output.id,
result: result
}]
});
console.log(`Response: ${interaction.outputs[interaction.outputs.length - 1].text}`);
}
}
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "What is the weather in Paris?",
"tools": [{
"type": "function",
"name": "get_weather",
"description": "Gets the weather for a given location.",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}
},
"required": ["location"]
}
}]
}'
# Handle the tool call and send result back (Replace INTERACTION_ID and CALL_ID)
# curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
# -H "Content-Type: application/json" \
# -H "x-goog-api-key: $GEMINI_API_KEY" \
# -d '{
# "model": "gemini-3-flash-preview",
# "previous_interaction_id": "INTERACTION_ID",
# "input": [{
# "type": "function_result",
# "name": "get_weather",
# "call_id": "FUNCTION_CALL_ID",
# "result": "The weather in Paris is sunny."
# }]
# }'
İstemci tarafı durumuyla işlev çağrısı
Sunucu tarafı durumu kullanmak istemiyorsanız tüm durumu istemci tarafında yönetebilirsiniz.
Python
from google import genai
client = genai.Client()
functions = [
{
"type": "function",
"name": "schedule_meeting",
"description": "Schedules a meeting with specified attendees at a given time and date.",
"parameters": {
"type": "object",
"properties": {
"attendees": {"type": "array", "items": {"type": "string"}},
"date": {"type": "string", "description": "Date of the meeting (e.g., 2024-07-29)"},
"time": {"type": "string", "description": "Time of the meeting (e.g., 15:00)"},
"topic": {"type": "string", "description": "The subject of the meeting."},
},
"required": ["attendees", "date", "time", "topic"],
},
}
]
history = [{"role": "user","content": [{"type": "text", "text": "Schedule a meeting for 2025-11-01 at 10 am with Peter and Amir about the Next Gen API."}]}]
# 1. Model decides to call the function
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input=history,
tools=functions
)
# add model interaction back to history
history.append({"role": "model", "content": interaction.outputs})
for output in interaction.outputs:
if output.type == "function_call":
print(f"Function call: {output.name} with arguments {output.arguments}")
# 2. Execute the function and get a result
# In a real app, you would call your function here.
# call_result = schedule_meeting(**json.loads(output.arguments))
call_result = "Meeting scheduled successfully."
# 3. Send the result back to the model
history.append({"role": "user", "content": [{"type": "function_result", "name": output.name, "call_id": output.id, "result": call_result}]})
interaction2 = client.interactions.create(
model="gemini-3-flash-preview",
input=history,
)
print(f"Final response: {interaction2.outputs[-1].text}")
else:
print(f"Output: {output}")
JavaScript
// 1. Define the tool
const functions = [
{
type: 'function',
name: 'schedule_meeting',
description: 'Schedules a meeting with specified attendees at a given time and date.',
parameters: {
type: 'object',
properties: {
attendees: { type: 'array', items: { type: 'string' } },
date: { type: 'string', description: 'Date of the meeting (e.g., 2024-07-29)' },
time: { type: 'string', description: 'Time of the meeting (e.g., 15:00)' },
topic: { type: 'string', description: 'The subject of the meeting.' },
},
required: ['attendees', 'date', 'time', 'topic'],
},
},
];
const history = [
{ role: 'user', content: [{ type: 'text', text: 'Schedule a meeting for 2025-11-01 at 10 am with Peter and Amir about the Next Gen API.' }] }
];
// 2. Model decides to call the function
let interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: history,
tools: functions
});
// add model interaction back to history
history.push({ role: 'model', content: interaction.outputs });
for (const output of interaction.outputs) {
if (output.type === 'function_call') {
console.log(`Function call: ${output.name} with arguments ${JSON.stringify(output.arguments)}`);
// 3. Send the result back to the model
history.push({ role: 'user', content: [{ type: 'function_result', name: output.name, call_id: output.id, result: 'Meeting scheduled successfully.' }] });
const interaction2 = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: history,
});
console.log(`Final response: ${interaction2.outputs[interaction2.outputs.length - 1].text}`);
}
}
Yerleşik araçlar
Gemini'da Google Arama ile temellendirme, kod yürütme, URL bağlamı ve bilgisayar kullanımı gibi yerleşik araçlar bulunur.
Google Arama ile temellendirme
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Who won the last Super Bowl?",
tools=[{"type": "google_search"}]
)
# Find the text output (not the GoogleSearchResultContent)
text_output = next((o for o in interaction.outputs if o.type == "text"), None)
if text_output:
print(text_output.text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Who won the last Super Bowl?',
tools: [{ type: 'google_search' }]
});
// Find the text output (not the GoogleSearchResultContent)
const textOutput = interaction.outputs.find(o => o.type === 'text');
if (textOutput) console.log(textOutput.text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Who won the last Super Bowl?",
"tools": [{"type": "google_search"}]
}'
Kod yürütme
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Calculate the 50th Fibonacci number.",
tools=[{"type": "code_execution"}]
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Calculate the 50th Fibonacci number.',
tools: [{ type: 'code_execution' }]
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Calculate the 50th Fibonacci number.",
"tools": [{"type": "code_execution"}]
}'
URL bağlamı
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Summarize the content of https://www.wikipedia.org/",
tools=[{"type": "url_context"}]
)
# Find the text output (not the URLContextResultContent)
text_output = next((o for o in interaction.outputs if o.type == "text"), None)
if text_output:
print(text_output.text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Summarize the content of https://www.wikipedia.org/',
tools: [{ type: 'url_context' }]
});
// Find the text output (not the URLContextResultContent)
const textOutput = interaction.outputs.find(o => o.type === 'text');
if (textOutput) console.log(textOutput.text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Summarize the content of https://www.wikipedia.org/",
"tools": [{"type": "url_context"}]
}'
Bilgisayar kullanımı
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-2.5-computer-use-preview-10-2025",
input="Search for highly rated smart fridges with touchscreen, 2 doors, around 25 cu ft, priced below 4000 dollars on Google Shopping. Create a bulleted list of the 3 cheapest options in the format of name, description, price in an easy-to-read layout.",
tools=[{
"type": "computer_use",
"environment": "browser",
"excludedPredefinedFunctions": ["drag_and_drop"]
}]
)
# The response will contain tool calls (actions) for the computer interface
# or text explaining the action
for output in interaction.outputs:
print(output)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-2.5-computer-use-preview-10-2025',
input: 'Search for highly rated smart fridges with touchscreen, 2 doors, around 25 cu ft, priced below 4000 dollars on Google Shopping. Create a bulleted list of the 3 cheapest options in the format of name, description, price in an easy-to-read layout.',
tools: [{
type: 'computer_use',
environment: 'browser',
excludedPredefinedFunctions: ['drag_and_drop']
}]
});
// The response will contain tool calls (actions) for the computer interface
// or text explaining the action
interaction.outputs.forEach(output => console.log(output));
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-computer-use-preview-10-2025",
"input": "Search for highly rated smart fridges with touchscreen, 2 doors, around 25 cu ft, priced below 4000 dollars on Google Shopping. Create a bulleted list of the 3 cheapest options in the format of name, description, price in an easy-to-read layout.",
"tools": [{
"type": "computer_use",
"environment": "browser",
"excludedPredefinedFunctions": ["drag_and_drop"]
}]
}'
Uzaktan Model Bağlamı Protokolü (MCP)
Uzaktan MCP entegrasyonu, Gemini API'nin uzaktaki sunucularda barındırılan harici araçları doğrudan çağırmasına izin vererek aracı geliştirme sürecini basitleştirir.
Python
import datetime
from google import genai
client = genai.Client()
mcp_server = {
"type": "mcp_server",
"name": "weather_service",
"url": "https://gemini-api-demos.uc.r.appspot.com/mcp"
}
today = datetime.date.today().strftime("%d %B %Y")
interaction = client.interactions.create(
model="gemini-2.5-flash",
input="What is the weather like in New York today?",
tools=[mcp_server],
system_instruction=f"Today is {today}."
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const mcpServer = {
type: 'mcp_server',
name: 'weather_service',
url: 'https://gemini-api-demos.uc.r.appspot.com/mcp'
};
const today = new Date().toDateString();
const interaction = await client.interactions.create({
model: 'gemini-2.5-flash',
input: 'What is the weather like in New York today?',
tools: [mcpServer],
system_instruction: `Today is ${today}.`
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash",
"input": "What is the weather like in New York today?",
"tools": [{
"type": "mcp_server",
"name": "weather_service",
"url": "https://gemini-api-demos.uc.r.appspot.com/mcp"
}],
"system_instruction": "Today is '"$(date +"%du%Bt%Y")"' YYYY-MM-DD>."
}'
Önemli notlar:
- Uzak MCP yalnızca akışa uygun HTTP sunucularıyla çalışır (SSE sunucuları desteklenmez).
- Uzak MCP, Gemini 3 modelleriyle çalışmaz (bu özellik yakında kullanıma sunulacaktır).
- MCP sunucu adları "-" karakterini içermemelidir (bunun yerine snake_case sunucu adlarını kullanın).
Yapılandırılmış çıktı (JSON şeması)
response_format parametresinde bir JSON şeması sağlayarak belirli bir JSON çıktısını zorunlu kılın. Bu, moderasyon, sınıflandırma veya veri çıkarma gibi görevler için kullanışlıdır.
Python
from google import genai
from pydantic import BaseModel, Field
from typing import Literal, Union
client = genai.Client()
class SpamDetails(BaseModel):
reason: str = Field(description="The reason why the content is considered spam.")
spam_type: Literal["phishing", "scam", "unsolicited promotion", "other"]
class NotSpamDetails(BaseModel):
summary: str = Field(description="A brief summary of the content.")
is_safe: bool = Field(description="Whether the content is safe for all audiences.")
class ModerationResult(BaseModel):
decision: Union[SpamDetails, NotSpamDetails]
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
response_format=ModerationResult.model_json_schema(),
)
parsed_output = ModerationResult.model_validate_json(interaction.outputs[-1].text)
print(parsed_output)
JavaScript
import { GoogleGenAI } from '@google/genai';
import { z } from 'zod';
const client = new GoogleGenAI({});
const moderationSchema = z.object({
decision: z.union([
z.object({
reason: z.string().describe('The reason why the content is considered spam.'),
spam_type: z.enum(['phishing', 'scam', 'unsolicited promotion', 'other']).describe('The type of spam.'),
}).describe('Details for content classified as spam.'),
z.object({
summary: z.string().describe('A brief summary of the content.'),
is_safe: z.boolean().describe('Whether the content is safe for all audiences.'),
}).describe('Details for content classified as not spam.'),
]),
});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: "Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
response_format: z.toJSONSchema(moderationSchema),
});
console.log(interaction.outputs[0].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
"response_format": {
"type": "object",
"properties": {
"decision": {
"type": "object",
"properties": {
"reason": {"type": "string", "description": "The reason why the content is considered spam."},
"spam_type": {"type": "string", "description": "The type of spam."}
},
"required": ["reason", "spam_type"]
}
},
"required": ["decision"]
}
}'
Araçları ve yapılandırılmış çıktıyı birleştirme
Dahili araçları yapılandırılmış çıktı ile birleştirerek, bir araç tarafından alınan bilgilere dayalı güvenilir bir JSON nesnesi elde edin.
Python
from google import genai
from pydantic import BaseModel, Field
from typing import Literal, Union
client = genai.Client()
class SpamDetails(BaseModel):
reason: str = Field(description="The reason why the content is considered spam.")
spam_type: Literal["phishing", "scam", "unsolicited promotion", "other"]
class NotSpamDetails(BaseModel):
summary: str = Field(description="A brief summary of the content.")
is_safe: bool = Field(description="Whether the content is safe for all audiences.")
class ModerationResult(BaseModel):
decision: Union[SpamDetails, NotSpamDetails]
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Moderate the following content: 'Congratulations! You've won a free cruise. Click here to claim your prize: www.definitely-not-a-scam.com'",
response_format=ModerationResult.model_json_schema(),
tools=[{"type": "url_context"}]
)
parsed_output = ModerationResult.model_validate_json(interaction.outputs[-1].text)
print(parsed_output)
JavaScript
import { GoogleGenAI } from '@google/genai';
import { z } from 'zod'; // Assuming zod is used for schema generation, or define manually
const client = new GoogleGenAI({});
const obj = z.object({
winning_team: z.string(),
score: z.string(),
});
const schema = z.toJSONSchema(obj);
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Who won the last euro?',
tools: [{ type: 'google_search' }],
response_format: schema,
});
console.log(interaction.outputs[0].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Who won the last euro?",
"tools": [{"type": "google_search"}],
"response_format": {
"type": "object",
"properties": {
"winning_team": {"type": "string"},
"score": {"type": "string"}
}
}
}'
Gelişmiş özellikler
Etkileşimler API'si ile çalışırken size daha fazla esneklik sağlayan ek gelişmiş özellikler de mevcuttur.
Canlı Yayın
Yanıtlar oluşturuldukça kademeli olarak alınır.
Python
from google import genai
client = genai.Client()
stream = client.interactions.create(
model="gemini-3-flash-preview",
input="Explain quantum entanglement in simple terms.",
stream=True
)
for chunk in stream:
if chunk.event_type == "content.delta":
if chunk.delta.type == "text":
print(chunk.delta.text, end="", flush=True)
elif chunk.delta.type == "thought":
print(chunk.delta.thought, end="", flush=True)
elif chunk.event_type == "interaction.complete":
print(f"\n\n--- Stream Finished ---")
print(f"Total Tokens: {chunk.interaction.usage.total_tokens}")
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const stream = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Explain quantum entanglement in simple terms.',
stream: true,
});
for await (const chunk of stream) {
if (chunk.event_type === 'content.delta') {
if (chunk.delta.type === 'text' && 'text' in chunk.delta) {
process.stdout.write(chunk.delta.text);
} else if (chunk.delta.type === 'thought' && 'thought' in chunk.delta) {
process.stdout.write(chunk.delta.thought);
}
} else if (chunk.event_type === 'interaction.complete') {
console.log('\n\n--- Stream Finished ---');
console.log(`Total Tokens: ${chunk.interaction.usage.total_tokens}`);
}
}
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions?alt=sse" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Explain quantum entanglement in simple terms.",
"stream": true
}'
Yapılandırma
generation_config ile modelin davranışını özelleştirin.
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Tell me a story about a brave knight.",
generation_config={
"temperature": 0.7,
"max_output_tokens": 500,
"thinking_level": "low",
}
)
print(interaction.outputs[-1].text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Tell me a story about a brave knight.',
generation_config: {
temperature: 0.7,
max_output_tokens: 500,
thinking_level: 'low',
}
});
console.log(interaction.outputs[interaction.outputs.length - 1].text);
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Tell me a story about a brave knight.",
"generation_config": {
"temperature": 0.7,
"max_output_tokens": 500,
"thinking_level": "low"
}
}'
Düşünen
Gemini 2.5 ve daha yeni modeller, yanıt oluşturmadan önce "düşünme" adı verilen dahili bir akıl yürütme süreci kullanır. Bu sayede model, matematik, kodlama ve çok adımlı akıl yürütme gibi karmaşık görevlerde daha iyi yanıtlar üretebilir.
Düşünme düzeyi
thinking_level parametresi, modelin muhakeme derinliğini kontrol etmenizi sağlar:
| Seviye | Açıklama | Desteklenen Modeller |
|---|---|---|
minimal |
Çoğu sorgu için "düşünme yok" ayarıyla eşleşir. Bazı durumlarda modeller çok az düşünebilir. Gecikmeyi ve maliyeti en aza indirir. | Yalnızca Flash Modelleri (ör. Gemini 3 Flash) |
low |
Basit talimatları uygulamada ve sohbetlerde gecikmeyi ve maliyet tasarrufunu önceliklendiren hafif akıl yürütme. | Tüm Düşünce Modelleri |
medium |
Çoğu görev için dengeli düşünme | Yalnızca Flash Modelleri (ör. Gemini 3 Flash) |
high |
(Varsayılan) Muhakeme derinliğini en üst düzeye çıkarır. Modelin ilk jetona ulaşması önemli ölçüde daha uzun sürebilir ancak çıkış daha dikkatli bir şekilde gerekçelendirilir. | Tüm Düşünce Modelleri |
Düşünce özetleri
Modelin düşünme süreci, yanıt çıkışlarında düşünce blokları (type: "thought") olarak gösterilir. thinking_summaries parametresini kullanarak düşünce sürecinin insan tarafından okunabilir özetlerini alıp almayacağınızı kontrol edebilirsiniz:
| Değer | Açıklama |
|---|---|
auto |
(Varsayılan) Kullanılabilir olduğunda düşünce özetlerini döndürür. |
none |
Düşünce özetlerini devre dışı bırakır. |
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input="Solve this step by step: What is 15% of 240?",
generation_config={
"thinking_level": "high",
"thinking_summaries": "auto"
}
)
for output in interaction.outputs:
if output.type == "thought":
print(f"Thinking: {output.summary}")
elif output.type == "text":
print(f"Answer: {output.text}")
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: 'Solve this step by step: What is 15% of 240?',
generation_config: {
thinking_level: 'high',
thinking_summaries: 'auto'
}
});
for (const output of interaction.outputs) {
if (output.type === 'thought') {
console.log(`Thinking: ${output.summary}`);
} else if (output.type === 'text') {
console.log(`Answer: ${output.text}`);
}
}
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": "Solve this step by step: What is 15% of 240?",
"generation_config": {
"thinking_level": "high",
"thinking_summaries": "auto"
}
}'
Her düşünce bloğu bir signature alanı (dahili akıl yürütme durumunun kriptografik karması) ve isteğe bağlı bir summary alanı (modelin akıl yürütmesinin insanlar tarafından okunabilir özeti) içerir. signature her zaman bulunur ancak bu durumlarda düşünce bloğu yalnızca imza içerebilir ve özet içermeyebilir:
- Basit istekler: Model, özet oluşturmak için yeterince gerekçe sunmadı.
thinking_summaries: "none": Özetler açıkça devre dışı bırakıldı
Kodunuz, summary değerinin boş veya eksik olduğu düşünce bloklarını her zaman işlemelidir. Görüşme geçmişini manuel olarak yönetirken (durumsuz mod), orijinalliği doğrulamak için sonraki isteklerde düşünce bloklarını imzalarıyla birlikte eklemeniz gerekir.
Dosyalarla çalışma
Uzak dosyalarla çalışma
API çağrısında doğrudan uzak URL'leri kullanarak dosyalara erişme.
Python
from google import genai
client = genai.Client()
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input=[
{
"type": "image",
"uri": "https://github.com/<github-path>/cats-and-dogs.jpg",
},
{"type": "text", "text": "Describe what you see."}
],
)
for output in interaction.outputs:
if output.type == "text":
print(output.text)
JavaScript
import { GoogleGenAI } from '@google/genai';
const client = new GoogleGenAI({});
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: [
{
type: 'image',
uri: 'https://github.com/<github-path>/cats-and-dogs.jpg',
},
{ type: 'text', text: 'Describe what you see.' }
],
});
for (const output of interaction.outputs) {
if (output.type === 'text') {
console.log(output.text);
}
}
REST
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": [
{
"type": "image",
"uri": "https://github.com/<github-path>/cats-and-dogs.jpg"
},
{"type": "text", "text": "Describe what you see."}
]
}'
Gemini Files API ile çalışma
Dosyaları kullanmadan önce Gemini Files API'ye yükleyin.
Python
from google import genai
import time
import requests
client = genai.Client()
# 1. Download the file
url = "https://github.com/philschmid/gemini-samples/raw/refs/heads/main/assets/cats-and-dogs.jpg"
response = requests.get(url)
with open("cats-and-dogs.jpg", "wb") as f:
f.write(response.content)
# 2. Upload to Gemini Files API
file = client.files.upload(file="cats-and-dogs.jpg")
# 3. Wait for processing
while client.files.get(name=file.name).state != "ACTIVE":
time.sleep(2)
# 4. Use in Interaction
interaction = client.interactions.create(
model="gemini-3-flash-preview",
input=[
{
"type": "image",
"uri": file.uri,
},
{"type": "text", "text": "Describe what you see."}
],
)
for output in interaction.outputs:
if output.type == "text":
print(output.text)
JavaScript
import { GoogleGenAI } from '@google/genai';
import * as fs from 'fs';
import fetch from 'node-fetch';
const client = new GoogleGenAI({});
// 1. Download the file
const url = 'https://github.com/philschmid/gemini-samples/raw/refs/heads/main/assets/cats-and-dogs.jpg';
const filename = 'cats-and-dogs.jpg';
const response = await fetch(url);
const buffer = await response.buffer();
fs.writeFileSync(filename, buffer);
// 2. Upload to Gemini Files API
const myfile = await client.files.upload({ file: filename, config: { mimeType: 'image/jpeg' } });
// 3. Wait for processing
while ((await client.files.get({ name: myfile.name })).state !== 'ACTIVE') {
await new Promise(resolve => setTimeout(resolve, 2000));
}
// 4. Use in Interaction
const interaction = await client.interactions.create({
model: 'gemini-3-flash-preview',
input: [
{ type: 'image', uri: myfile.uri, },
{ type: 'text', text: 'Describe what you see.' }
],
});
for (const output of interaction.outputs) {
if (output.type === 'text') {
console.log(output.text);
}
}
REST
# 1. Upload the file (Requires File API setup)
# See https://ai.google.dev/gemini-api/docs/files for details.
# Assume FILE_URI is obtained from the upload step.
curl -X POST "https://generativelanguage.googleapis.com/v1beta/interactions" \
-H "Content-Type: application/json" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-d '{
"model": "gemini-3-flash-preview",
"input": [
{"type": "image", "uri": "FILE_URI"},
{"type": "text", "text": "Describe what you see."}
]
}'
Veri modeli
Veri modeli hakkında daha fazla bilgiyi API Referansı'nda bulabilirsiniz. Aşağıda, ana bileşenlere ilişkin üst düzey bir genel bakış verilmiştir.
Etkileşim
| Mülk | Tür | Açıklama |
|---|---|---|
id |
string |
Etkileşimin benzersiz tanımlayıcısı. |
model/agent |
string |
Kullanılan model veya aracı. Yalnızca bir tane sağlanabilir. |
input |
Content[] |
Sağlanan girişler. |
outputs |
Content[] |
Modelin yanıtları. |
tools |
Tool[] |
Kullanılan araçlar |
previous_interaction_id |
string |
Bağlam için önceki etkileşimin kimliği. |
stream |
boolean |
Etkileşimin yayınlanıp yayınlanmadığı. |
status |
string |
Durum: completed, in_progress, requires_action,failed vb. |
background |
boolean |
Etkileşimin arka plan modunda olup olmadığı. |
store |
boolean |
Etkileşimin saklanıp saklanmayacağı. Varsayılan: true. Devre dışı bırakmak için false olarak ayarlayın. |
usage |
Kullanım | Etkileşim isteğinin jeton kullanımı. |
Desteklenen modeller ve temsilciler
| Model Adı | Tür | Model Kimliği |
|---|---|---|
| Gemini 2.5 Pro | Model | gemini-2.5-pro |
| Gemini 2.5 Flash | Model | gemini-2.5-flash |
| Gemini 2.5 Flash-lite | Model | gemini-2.5-flash-lite |
| Gemini 3 Pro Önizlemesi | Model | gemini-3-pro-preview |
| Gemini 3 Flash Önizlemesi | Model | gemini-3-flash-preview |
| Derinlemesine Araştırma Önizlemesi | Temsilci | deep-research-pro-preview-12-2025 |
Etkileşimler API'si nasıl çalışır?
Etkileşimler API'si, merkezi bir kaynak olan Interaction etrafında tasarlanmıştır.
Interaction, bir görüşme veya görevdeki tam dönüşü ifade eder. Bu, bir oturum kaydı görevi görür ve tüm kullanıcı girdileri, model düşünceleri, araç çağrıları, araç sonuçları ve nihai model çıktıları da dahil olmak üzere bir etkileşimin tüm geçmişini içerir.
Telefon ettiğinizdeinteractions.create Yeni bir tane oluşturuyorsunuz.Interaction kaynak.
Sunucu tarafı durum yönetimi
Sohbete devam etmek için previous_interaction_id parametresini kullanarak sonraki bir çağrıda tamamlanmış bir etkileşimin id değerini kullanabilirsiniz. Sunucu, sohbet geçmişini almak için bu kimliği kullanır. Böylece tüm sohbet geçmişini yeniden göndermeniz gerekmez.
previous_interaction_id kullanılarak yalnızca görüşme geçmişi (girişler ve çıkışlar) korunur. Diğer parametreler etkileşim kapsamlıdır
ve yalnızca şu anda oluşturduğunuz etkileşim için geçerlidir:
toolssystem_instructiongeneration_config(thinking_level,temperaturevb. dahil)
Bu, bu parametrelerin geçerli olmasını istiyorsanız, her yeni etkileşimde bunları yeniden belirtmeniz gerektiği anlamına gelir. Bu sunucu tarafı durum yönetimi isteğe bağlıdır. Her isteğe tam görüşme geçmişini göndererek durum bilgisiz modda da çalışabilirsiniz.
Veri depolama ve saklama
Varsayılan olarak, sunucu tarafı durum yönetimi özelliklerinin (store=true ile), arka planda yürütmenin (previous_interaction_id kullanılarak) ve gözlemlenebilirlik amaçlarının kullanımını basitleştirmek için tüm Etkileşim nesneleri depolanır (background=true).
- Ücretli Katman: Etkileşimler 55 gün süreyle saklanır.
- Ücretsiz katman: Etkileşimler 1 gün boyunca saklanır.
Bunu istemiyorsanız, isteğinizde store=false değerini belirtebilirsiniz. Bu kontrol, durum yönetiminden ayrıdır. Herhangi bir etkileşim için depolamayı devre dışı bırakabilirsiniz. Ancak store=false ile background=true'nin uyumsuz olduğunu ve sonraki dönüşlerde previous_interaction_id'nin kullanılmasını engellediğini unutmayın.
API Referansı'nda bulunan silme yöntemini kullanarak depolanan etkileşimleri istediğiniz zaman silebilirsiniz. Yalnızca etkileşim kimliğini biliyorsanız etkileşimleri silebilirsiniz.
Saklama süresi sona erdikten sonra verileriniz otomatik olarak silinir.
Etkileşim nesneleri, şartlara göre işlenir.
En iyi uygulamalar
- Önbellek isabet oranı: Konuşmalara devam etmek için
previous_interaction_idkullanıldığında sistem, konuşma geçmişi için örtülü önbelleğe almayı daha kolay kullanabilir. Bu da performansı artırır ve maliyetleri düşürür. - Etkileşimleri karıştırma: Bir görüşmede Aracı ve Model etkileşimlerini karıştırıp eşleştirebilirsiniz. Örneğin, ilk veri toplama için Derin Araştırma aracısı gibi özel bir aracı kullanabilir, ardından özetleme veya yeniden biçimlendirme gibi takip görevleri için standart bir Gemini modeli kullanabilirsiniz. Bu adımları
previous_interaction_idile bağlayabilirsiniz.
SDK'lar
Etkileşimler API'sine erişmek için Google GenAI SDK'larının en son sürümünü kullanabilirsiniz.
- Python'da bu,
1.55.0sürümünden itibarengoogle-genaipaketidir. - JavaScript'te bu,
1.33.0sürümünden itibaren@google/genaipaketidir.
SDK'ları nasıl yükleyeceğiniz hakkında daha fazla bilgiyi Kitaplıklar sayfasında bulabilirsiniz.
Sınırlamalar
- Beta durumu: Etkileşimler API'si beta/önizleme sürümündedir. Özellikler ve şemalar değişebilir.
Desteklenmeyen özellikler: Aşağıdaki özellikler henüz desteklenmemektedir ancak yakında kullanıma sunulacaktır:
Çıkış sırası: Yerleşik araçların (
google_searchveurl_context) içerik sırası bazen yanlış olabilir. Metin, araç yürütülmeden ve sonuç gösterilmeden önce görünebilir. Bu bilinen bir sorundur ve düzeltme üzerinde çalışılmaktadır.Araç kombinasyonları: MCP, Function Call ve yerleşik araçların birleştirilmesi henüz desteklenmemektedir ancak yakında desteklenecektir.
Uzak MCP: Gemini 3, uzak MCP'yi desteklemez. Bu özellik yakında kullanıma sunulacaktır.
Zarar veren değişiklikler
Etkileşimler API'si şu anda erken beta aşamasındadır. API özelliklerini, kaynak şemalarını ve SDK arayüzlerini gerçek dünya kullanımına ve geliştirici geri bildirimlerine göre aktif olarak geliştirip iyileştiriyoruz.
Bu nedenle, uyumluluğu bozan değişiklikler olabilir. Güncellemeler şunlarda değişiklikler içerebilir:
- Giriş ve çıkış şemaları.
- SDK yöntemi imzaları ve nesne yapıları.
- Belirli özelliklerin davranışları.
Üretim iş yükleri için standart generateContent API'yi kullanmaya devam etmeniz gerekir. Kararlı dağıtımlar için önerilen yol olmaya devam edecek ve aktif olarak geliştirilip korunacaktır.
Geri bildirim
Geri bildiriminiz, Etkileşimler API'sinin geliştirilmesi için çok önemlidir. Lütfen düşüncelerinizi paylaşın, hataları bildirin veya özellik isteklerinizi Google Yapay Zeka Geliştirici Topluluğu Forumu'nda iletin.
Sırada ne var?
- Etkileşimler API'si hızlı başlangıç not defterini deneyin.
- Gemini Deep Research Agent hakkında daha fazla bilgi edinin.