مدلهای Gemini با استفاده از کتابخانههای OpenAI (Python و TypeScript / Javascript) همراه با REST API، با بهروزرسانی سه خط کد و استفاده از کلید Gemini API در دسترس هستند. اگر قبلاً از کتابخانههای OpenAI استفاده نمیکنید، توصیه میکنیم مستقیماً با Gemini API تماس بگیرید.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
چه چیزی تغییر کرد؟ فقط سه خط!
api_key="GEMINI_API_KEY"
: "GEMINI_API_KEY
" را با کلید Gemini API واقعی خود جایگزین کنید، که می توانید آن را در Google AI Studio دریافت کنید.base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
: به کتابخانه OpenAI میگوید به جای URL پیشفرض، درخواستها را به نقطه پایانی API Gemini ارسال کند.model="gemini-2.0-flash"
: یک مدل Gemini سازگار انتخاب کنید
فکر کردن
مدل های Gemini 2.5 برای فکر کردن در مورد مسائل پیچیده آموزش دیده اند که منجر به بهبود قابل توجه استدلال می شود. Gemini API با یک پارامتر «بودجه فکری» ارائه میشود که کنترل دانههای دقیقی را بر میزان تفکر مدل میدهد.
برخلاف Gemini API، OpenAI API سه سطح کنترل تفکر را ارائه میدهد: "low"
، "medium"
و "high"
که به ترتیب به 1024، 8192 و 24576 توکن نشان داده میشود.
اگر میخواهید تفکر را غیرفعال کنید، میتوانید reasoning_effort
روی "none"
تنظیم کنید (توجه داشته باشید که استدلال برای مدلهای 2.5 Pro غیرفعال نیست).
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
reasoning_effort="low",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.5-flash",
reasoning_effort: "low",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash",
"reasoning_effort": "low",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
مدل های تفکر Gemini نیز خلاصه های فکری را تولید می کنند و می توانند از بودجه های تفکر دقیق استفاده کنند. می توانید از فیلد extra_body
برای درج این فیلدها در درخواست خود استفاده کنید.
توجه داشته باشید که reasoning_effort
و thinking_budget
عملکردهای همپوشانی دارند، بنابراین نمی توان همزمان از آنها استفاده کرد.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.5-flash",
messages=[{"role": "user", "content": "Explain to me how AI works"}],
extra_body={
'extra_body': {
"google": {
"thinking_config": {
"thinking_budget": 800,
"include_thoughts": True
}
}
}
}
)
print(response.choices[0].message)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.5-flash",
messages: [{role: "user", content: "Explain to me how AI works",}],
extra_body: {
"google": {
"thinking_config": {
"thinking_budget": 800,
"include_thoughts": true
}
}
}
});
console.log(response.choices[0].message);
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "Explain to me how AI works"}],
"extra_body": {
"google": {
"thinking_config": {
"include_thoughts": true
}
}
}
}'
پخش جریانی
Gemini API از پاسخهای جریانی پشتیبانی میکند.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const completion = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
],
"stream": true
}'
فراخوانی تابع
فراخوانی تابع، دریافت خروجی داده های ساختاریافته از مدل های تولیدی را برای شما آسان تر می کند و در Gemini API پشتیبانی می شود.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response);
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Chicago today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
درک تصویر
مدلهای Gemini بهطور بومی چندوجهی هستند و بهترین عملکرد را در کلاس در بسیاری از وظایف رایج بینایی ارائه میدهند.
پایتون
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
},
},
],
}
],
)
print(response.choices[0])
جاوا اسکریپت
import OpenAI from "openai";
import fs from 'fs/promises';
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function encodeImage(imagePath) {
try {
const imageBuffer = await fs.readFile(imagePath);
return imageBuffer.toString('base64');
} catch (error) {
console.error("Error encoding image:", error);
return null;
}
}
async function main() {
const imagePath = "Path/to/agi/image.jpeg";
const base64Image = await encodeImage(imagePath);
const messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": `data:image/jpeg;base64,${base64Image}`
},
},
],
}
];
try {
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
});
console.log(response.choices[0]);
} catch (error) {
console.error("Error calling Gemini API:", error);
}
}
main();
استراحت
bash -c '
base64_image=$(base64 -i "Path/to/agi/image.jpeg");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"What is in this image?\" },
{
\"type\": \"image_url\",
\"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
}
]
}
]
}"
'
یک تصویر تولید کنید
ایجاد یک تصویر:
پایتون
import base64
from openai import OpenAI
from PIL import Image
from io import BytesIO
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
)
response = client.images.generate(
model="imagen-3.0-generate-002",
prompt="a portrait of a sheepadoodle wearing a cape",
response_format='b64_json',
n=1,
)
for image_data in response.data:
image = Image.open(BytesIO(base64.b64decode(image_data.b64_json)))
image.show()
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const image = await openai.images.generate(
{
model: "imagen-3.0-generate-002",
prompt: "a portrait of a sheepadoodle wearing a cape",
response_format: "b64_json",
n: 1,
}
);
console.log(image.data);
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/images/generations" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "imagen-3.0-generate-002",
"prompt": "a portrait of a sheepadoodle wearing a cape",
"response_format": "b64_json",
"n": 1,
}'
درک صوتی
آنالیز ورودی صدا:
پایتون
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
with open("/path/to/your/audio/file.wav", "rb") as audio_file:
base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Transcribe this audio",
},
{
"type": "input_audio",
"input_audio": {
"data": base64_audio,
"format": "wav"
}
}
],
}
],
)
print(response.choices[0].message.content)
جاوا اسکریپت
import fs from "fs";
import OpenAI from "openai";
const client = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
const audioFile = fs.readFileSync("/path/to/your/audio/file.wav");
const base64Audio = Buffer.from(audioFile).toString("base64");
async function main() {
const response = await client.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{
role: "user",
content: [
{
type: "text",
text: "Transcribe this audio",
},
{
type: "input_audio",
input_audio: {
data: base64Audio,
format: "wav",
},
},
],
},
],
});
console.log(response.choices[0].message.content);
}
main();
استراحت
bash -c '
base64_audio=$(base64 -i "/path/to/your/audio/file.wav");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"Transcribe this audio file.\" },
{
\"type\": \"input_audio\",
\"input_audio\": {
\"data\": \"${base64_audio}\",
\"format\": \"wav\"
}
}
]
}
]
}"
'
خروجی ساختاریافته
مدلهای Gemini میتوانند اشیاء JSON را در هر ساختاری که تعریف میکنید خروجی دهند.
پایتون
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
جاوا اسکریپت
import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});
const CalendarEvent = z.object({
name: z.string(),
date: z.string(),
participants: z.array(z.string()),
});
const completion = await openai.chat.completions.parse({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "Extract the event information." },
{ role: "user", content: "John and Susan are going to an AI conference on Friday" },
],
response_format: zodResponseFormat(CalendarEvent, "event"),
});
const event = completion.choices[0].message.parsed;
console.log(event);
جاسازی ها
تعبیههای متن ارتباط رشتههای متنی را اندازهگیری میکنند و میتوانند با استفاده از Gemini API تولید شوند.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.embeddings.create(
input="Your text string goes here",
model="gemini-embedding-001"
)
print(response.data[0].embedding)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const embedding = await openai.embeddings.create({
model: "gemini-embedding-001",
input: "Your text string goes here",
});
console.log(embedding);
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"input": "Your text string goes here",
"model": "gemini-embedding-001"
}'
Batch API
می توانید کارهای دسته ای ایجاد کنید، آنها را ارسال کنید و وضعیت آنها را با استفاده از کتابخانه OpenAI بررسی کنید.
شما باید فایل JSONL را با فرمت ورودی OpenAI آماده کنید. به عنوان مثال:
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
سازگاری OpenAI برای Batch از ایجاد یک دسته، نظارت بر وضعیت کار و مشاهده نتایج دستهای پشتیبانی میکند.
سازگاری برای آپلود و دانلود در حال حاضر پشتیبانی نمی شود. در عوض، مثال زیر از سرویس گیرنده genai
برای آپلود و دانلود فایلها استفاده میکند، مانند زمانی که از Gemini Batch API استفاده میکنید.
پایتون
from openai import OpenAI
# Regular genai client for uploads & downloads
from google import genai
client = genai.Client()
openai_client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Upload the JSONL file in OpenAI input format, using regular genai SDK
uploaded_file = client.files.upload(
file='my-batch-requests.jsonl',
config=types.UploadFileConfig(display_name='my-batch-requests', mime_type='jsonl')
)
# Create batch
batch = openai_client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/chat/completions",
completion_window="24h"
)
# Wait for batch to finish (up to 24h)
while True:
batch = client.batches.retrieve(batch.id)
if batch.status in ('completed', 'failed', 'cancelled', 'expired'):
break
print(f"Batch not finished. Current state: {batch.status}. Waiting 30 seconds...")
time.sleep(30)
print(f"Batch finished: {batch}")
# Download results in OpenAI output format, using regular genai SDK
file_content = genai_client.files.download(file=batch.output_file_id).decode('utf-8')
# See batch_output JSONL in OpenAI output format
for line in file_content.splitlines():
print(line)
OpenAI SDK همچنین از ایجاد جاسازی ها با Batch API پشتیبانی می کند. برای انجام این کار، فیلد endpoint
متد create
را برای نقطه پایانی embeddings، و همچنین کلیدهای url
و model
در فایل JSONL تغییر دهید:
# JSONL file using embeddings model and endpoint
# {"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "ggemini-embedding-001", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
# {"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "gemini-embedding-001", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}
# ...
# Create batch step with embeddings endpoint
batch = openai_client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/embeddings",
completion_window="24h"
)
برای مثال کامل، بخش تولید دستهای از کتاب آشپزی سازگاری OpenAI را ببینید.
extra_body
چندین ویژگی وجود دارد که توسط Gemini پشتیبانی میشود که در مدلهای OpenAI موجود نیستند، اما میتوان آنها را با استفاده از قسمت extra_body
فعال کرد.
ویژگی های extra_body
cached_content | مربوط به Gemini's GenerateContentRequest.cached_content است. |
thinking_config | مربوط به Gemini's ThinkingConfig است. |
cached_content
در اینجا مثالی از استفاده از extra_body
برای تنظیم cached_content
آورده شده است:
پایتون
from openai import OpenAI
client = OpenAI(
api_key=MY_API_KEY,
base_url="https://generativelanguage.googleapis.com/v1beta/"
)
stream = client.chat.completions.create(
model="gemini-2.5-pro",
n=1,
messages=[
{
"role": "user",
"content": "Summarize the video"
}
],
stream=True,
stream_options={'include_usage': True},
extra_body={
'extra_body':
{
'google': {
'cached_content': "cachedContents/0000aaaa1111bbbb2222cccc3333dddd4444eeee"
}
}
}
)
for chunk in stream:
print(chunk)
print(chunk.usage.to_dict())
مدل ها را لیست کنید
لیستی از مدل های موجود جمینی را دریافت کنید:
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
models = client.models.list()
for model in models:
print(model.id)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const list = await openai.models.list();
for await (const model of list) {
console.log(model);
}
}
main();
استراحت
curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"
یک مدل را بازیابی کنید
مدل جمینی را بازیابی کنید:
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
model = client.models.retrieve("gemini-2.0-flash")
print(model.id)
جاوا اسکریپت
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const model = await openai.models.retrieve("gemini-2.0-flash");
console.log(model.id);
}
main();
استراحت
curl https://generativelanguage.googleapis.com/v1beta/openai/models/gemini-2.0-flash \
-H "Authorization: Bearer GEMINI_API_KEY"
محدودیت های فعلی
پشتیبانی از کتابخانههای OpenAI هنوز در مرحله بتا است، در حالی که ما پشتیبانی از ویژگی را گسترش میدهیم.
اگر در مورد پارامترهای پشتیبانیشده، ویژگیهای آینده سؤالی دارید یا در شروع کار با Gemini با مشکلی مواجه شدید، به تالار گفتمان برنامهنویس ما بپیوندید.
بعدش چی
OpenAI Compatibility Colab ما را امتحان کنید تا با مثال های دقیق تر کار کنید.