مدلهای Gemini با استفاده از کتابخانههای OpenAI (Python و TypeScript / Javascript) همراه با REST API، با بهروزرسانی سه خط کد و استفاده از کلید Gemini API در دسترس هستند. اگر قبلاً از کتابخانههای OpenAI استفاده نمیکنید، توصیه میکنیم مستقیماً با Gemini API تماس بگیرید.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.0-flash",
n=1,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Explain to me how AI works",
},
],
});
console.log(response.choices[0].message);
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
]
}'
چه چیزی تغییر کرد؟ فقط سه خط!
api_key="GEMINI_API_KEY"
: به سادگی "GEMINI_API_KEY
" را با کلید Gemini API واقعی خود جایگزین کنید، که می توانید آن را در Google AI Studio دریافت کنید.base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
: این به کتابخانه OpenAI میگوید به جای OpenAI استاندارد، درخواستها را به نقطه پایانی API Gemini ارسال کند.model="gemini-2.0-flash"
: ما مدل قدرتمند و کارآمد gemini-2.0-flash را مشخص می کنیم.
مدل ها را لیست کنید
لیستی از مدل های موجود جمینی را دریافت کنید:
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
models = client.models.list()
for model in models:
print(model.id)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const list = await openai.models.list();
for await (const model of list) {
console.log(model);
}
}
main();
استراحت
curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"
یک مدل را بازیابی کنید
مدل جمینی را بازیابی کنید:
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
model = client.models.retrieve("gemini-2.0-flash")
print(model.id)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const model = await openai.models.retrieve("gemini-2.0-flash");
console.log(model.id);
}
main();
استراحت
curl https://generativelanguage.googleapis.com/v1beta/openai/models/gemini-2.0-flash \
-H "Authorization: Bearer GEMINI_API_KEY"
پخش جریانی
Gemini API از پاسخهای جریانی پشتیبانی میکند.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const completion = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{"role": "user", "content": "Explain to me how AI works"}
],
"stream": true
}'
فراخوانی تابع
فراخوانی تابع، دریافت خروجی داده های ساختاریافته از مدل های تولیدی را برای شما آسان تر می کند و در Gemini API پشتیبانی می شود.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response);
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "gemini-2.0-flash",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Chicago today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
درک تصویر
مدلهای Gemini بهطور بومی چندوجهی هستند و بهترین عملکرد را در کلاس در بسیاری از وظایف رایج بینایی ارائه میدهند.
پایتون
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
},
},
],
}
],
)
print(response.choices[0])
Node.js
import OpenAI from "openai";
import fs from 'fs/promises';
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function encodeImage(imagePath) {
try {
const imageBuffer = await fs.readFile(imagePath);
return imageBuffer.toString('base64');
} catch (error) {
console.error("Error encoding image:", error);
return null;
}
}
async function main() {
const imagePath = "Path/to/agi/image.jpeg";
const base64Image = await encodeImage(imagePath);
const messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": `data:image/jpeg;base64,${base64Image}`
},
},
],
}
];
try {
const response = await openai.chat.completions.create({
model: "gemini-2.0-flash",
messages: messages,
});
console.log(response.choices[0]);
} catch (error) {
console.error("Error calling Gemini API:", error);
}
}
main();
استراحت
bash -c '
base64_image=$(base64 -i "Path/to/agi/image.jpeg");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"What is in this image?\" },
{
\"type\": \"image_url\",
\"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
}
]
}
]
}"
'
یک تصویر تولید کنید
ایجاد یک تصویر:
پایتون
import base64
from openai import OpenAI
from PIL import Image
from io import BytesIO
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
)
response = client.images.generate(
model="imagen-3.0-generate-002",
prompt="a portrait of a sheepadoodle wearing a cape",
response_format='b64_json',
n=1,
)
for image_data in response.data:
image = Image.open(BytesIO(base64.b64decode(image_data.b64_json)))
image.show()
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
async function main() {
const image = await openai.images.generate(
{
model: "imagen-3.0-generate-002",
prompt: "a portrait of a sheepadoodle wearing a cape",
response_format: "b64_json",
n: 1,
}
);
console.log(image.data);
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/images/generations" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"model": "imagen-3.0-generate-002",
"prompt": "a portrait of a sheepadoodle wearing a cape",
"response_format": "b64_json",
"n": 1,
}'
درک صوتی
آنالیز ورودی صدا:
پایتون
import base64
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
with open("/path/to/your/audio/file.wav", "rb") as audio_file:
base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Transcribe this audio",
},
{
"type": "input_audio",
"input_audio": {
"data": base64_audio,
"format": "wav"
}
}
],
}
],
)
print(response.choices[0].message.content)
Node.js
import fs from "fs";
import OpenAI from "openai";
const client = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});
const audioFile = fs.readFileSync("/path/to/your/audio/file.wav");
const base64Audio = Buffer.from(audioFile).toString("base64");
async function main() {
const response = await client.chat.completions.create({
model: "gemini-2.0-flash",
messages: [
{
role: "user",
content: [
{
type: "text",
text: "Transcribe this audio",
},
{
type: "input_audio",
input_audio: {
data: base64Audio,
format: "wav",
},
},
],
},
],
});
console.log(response.choices[0].message.content);
}
main();
استراحت
bash -c '
base64_audio=$(base64 -i "/path/to/your/audio/file.wav");
curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d "{
\"model\": \"gemini-2.0-flash\",
\"messages\": [
{
\"role\": \"user\",
\"content\": [
{ \"type\": \"text\", \"text\": \"Transcribe this audio file.\" },
{
\"type\": \"input_audio\",
\"input_audio\": {
\"data\": \"${base64_audio}\",
\"format\": \"wav\"
}
}
]
}
]
}"
'
خروجی ساختاریافته
مدلهای Gemini میتوانند اشیاء JSON را در هر ساختاری که تعریف میکنید خروجی دهند.
پایتون
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="gemini-2.0-flash",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
Node.js
import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});
const CalendarEvent = z.object({
name: z.string(),
date: z.string(),
participants: z.array(z.string()),
});
const completion = await openai.beta.chat.completions.parse({
model: "gemini-2.0-flash",
messages: [
{ role: "system", content: "Extract the event information." },
{ role: "user", content: "John and Susan are going to an AI conference on Friday" },
],
response_format: zodResponseFormat(CalendarEvent, "event"),
});
const event = completion.choices[0].message.parsed;
console.log(event);
جاسازی ها
تعبیههای متن ارتباط رشتههای متنی را اندازهگیری میکنند و میتوانند با استفاده از Gemini API تولید شوند.
پایتون
from openai import OpenAI
client = OpenAI(
api_key="GEMINI_API_KEY",
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
response = client.embeddings.create(
input="Your text string goes here",
model="text-embedding-004"
)
print(response.data[0].embedding)
Node.js
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: "GEMINI_API_KEY",
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});
async function main() {
const embedding = await openai.embeddings.create({
model: "text-embedding-004",
input: "Your text string goes here",
});
console.log(embedding);
}
main();
استراحت
curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
"input": "Your text string goes here",
"model": "text-embedding-004"
}'
محدودیت های فعلی
پشتیبانی از کتابخانههای OpenAI هنوز در مرحله بتا است، در حالی که ما پشتیبانی از ویژگی را گسترش میدهیم.
اگر در مورد پارامترهای پشتیبانیشده، ویژگیهای آینده سؤالی دارید یا در شروع کار با Gemini با مشکلی مواجه شدید، به تالار گفتمان برنامهنویس ما بپیوندید.