L'API Gemini può generare output di testo in risposta a vari input, tra cui testo, immagini, video e audio. Questa guida illustra come generare testo utilizzando input di testo e immagini. Inoltre, tratta di streaming, chat e istruzioni di sistema.
Inserimento testo
Il modo più semplice per generare testo utilizzando l'API Gemini è fornire al modello un singolo input di solo testo, come mostrato in questo esempio:
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["How does AI work?"]
)
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "How does AI work?",
});
console.log(response.text);
}
await main();
// import packages here
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-2.0-flash")
resp, err := model.GenerateContent(ctx, genai.Text("How does AI work?"))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // helper function for printing content parts
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "How does AI work?"
}
]
}
]
}'
Input di immagini
L'API Gemini supporta input multimodali che combinano file di testo e multimediali. L'esempio seguente mostra come generare testo da input di testo e immagini:
from PIL import Image
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[image, "Tell me about this instrument"]
)
print(response.text)
import {
GoogleGenAI,
createUserContent,
createPartFromUri,
} from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const image = await ai.files.upload({
file: "/path/to/organ.png",
});
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: [
createUserContent([
"Tell me about this instrument",
createPartFromUri(image.uri, image.mimeType),
]),
],
});
console.log(response.text);
}
await main();
model := client.GenerativeModel("gemini-2.0-flash")
imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
log.Fatal(err)
}
resp, err := model.GenerateContent(ctx,
genai.Text("Tell me about this instrument"),
genai.ImageData("jpeg", imgData))
if err != nil {
log.Fatal(err)
}
printResponse(resp)
# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"
# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT
cat > "$TEMP_JSON" << EOF
{
"contents": [
{
"parts": [
{
"text": "Tell me about this instrument"
},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": "$(cat "$TEMP_B64")"
}
}
]
}
]
}
EOF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d "@$TEMP_JSON"
Output streaming
Per impostazione predefinita, il modello restituisce una risposta al termine dell'intero processo di generazione del testo. Puoi ottenere interazioni più rapide utilizzando lo streaming per
restituire istanze di
GenerateContentResponse
man mano che vengono generate.
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content_stream(
model="gemini-2.0-flash",
contents=["Explain how AI works"]
)
for chunk in response:
print(chunk.text, end="")
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContentStream({
model: "gemini-2.0-flash",
contents: "Explain how AI works",
});
for await (const chunk of response) {
console.log(chunk.text);
}
}
await main();
model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
resp, err := iter.Next()
if err == iterator.Done {
break
}
if err != nil {
log.Fatal(err)
}
printResponse(resp)
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=${GEMINI_API_KEY}" \
-H 'Content-Type: application/json' \
--no-buffer \
-d '{
"contents": [
{
"parts": [
{
"text": "Explain how AI works"
}
]
}
]
}'
Conversazioni a più turni
L'SDK Gemini ti consente di raccogliere più round di domande e risposte in una chat. Il formato della chat consente agli utenti di procedere gradualmente verso le risposte e di ricevere assistenza per problemi articolati. Questa implementazione della chat dell'SDK fornisce un'interfaccia per tenere traccia della cronologia delle conversazioni, ma dietro le quinte utilizza lo stesso metodo generateContent
per creare la risposta.
Il seguente esempio di codice mostra un'implementazione di chat di base:
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")
response = chat.send_message("I have 2 dogs in my house.")
print(response.text)
response = chat.send_message("How many paws are in my house?")
print(response.text)
for message in chat.get_history():
print(f'role - {message.role}',end=": ")
print(message.parts[0].text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const response1 = await chat.sendMessage({
message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);
const response2 = await chat.sendMessage({
message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);
}
await main();
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hello, I have 2 dogs in my house."),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Great to meet you. What would you like to know?"),
},
Role: "model",
},
}
res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
log.Fatal(err)
}
printResponse(res)
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hello"
}
]
},
{
"role": "model",
"parts": [
{
"text": "Great to meet you. What would you like to know?"
}
]
},
{
"role": "user",
"parts": [
{
"text": "I have two dogs in my house. How many paws are in my house?"
}
]
}
]
}'
Puoi anche utilizzare lo streaming con la chat, come mostrato nell'esempio seguente:
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")
response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
print(chunk.text, end="")
response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
print(chunk.text, end="")
for message in chat.get_history():
print(f'role - {message.role}', end=": ")
print(message.parts[0].text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const stream1 = await chat.sendMessageStream({
message: "I have 2 dogs in my house.",
});
for await (const chunk of stream1) {
console.log(chunk.text);
console.log("_".repeat(80));
}
const stream2 = await chat.sendMessageStream({
message: "How many paws are in my house?",
});
for await (const chunk of stream2) {
console.log(chunk.text);
console.log("_".repeat(80));
}
}
await main();
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hello, I have 2 dogs in my house."),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Great to meet you. What would you like to know?"),
},
Role: "model",
},
}
iter := cs.SendMessageStream(ctx, genai.Text("How many paws are in my house?"))
for {
resp, err := iter.Next()
if err == iterator.Done {
break
}
if err != nil {
log.Fatal(err)
}
printResponse(resp)
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hello"
}
]
},
{
"role": "model",
"parts": [
{
"text": "Great to meet you. What would you like to know?"
}
]
},
{
"role": "user",
"parts": [
{
"text": "I have two dogs in my house. How many paws are in my house?"
}
]
}
]
}'
Parametri di configurazione
Ogni prompt inviato al modello include parametri che controllano il modo in cui il modello genera le risposte. Puoi configurare questi parametri o lasciare che il modello utilizzi le opzioni predefinite.
L'esempio seguente mostra come configurare i parametri del modello:
from google import genai
from google.genai import types
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["Explain how AI works"],
config=types.GenerateContentConfig(
max_output_tokens=500,
temperature=0.1
)
)
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Explain how AI works",
config: {
maxOutputTokens: 500,
temperature: 0.1,
},
});
console.log(response.text);
}
await main();
model := client.GenerativeModel("gemini-1.5-pro-latest")
model.SetTemperature(0.9)
model.SetTopP(0.5)
model.SetTopK(20)
model.SetMaxOutputTokens(100)
model.SystemInstruction = genai.NewUserContent(genai.Text("You are Yoda from Star Wars."))
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
if err != nil {
log.Fatal(err)
}
printResponse(resp)
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{
"parts": [
{
"text": "Explain how AI works"
}
]
}
],
"generationConfig": {
"stopSequences": [
"Title"
],
"temperature": 1.0,
"maxOutputTokens": 800,
"topP": 0.8,
"topK": 10
}
}'
Ecco alcuni dei parametri del modello che puoi configurare. (le convenzioni di denominazione varieranno in base al linguaggio di programmazione).
stopSequences
: specifica l'insieme di sequenze di caratteri (fino a 5) che interromperanno la generazione dell'output. Se specificato, l'API si fermerà alla prima apparizione di unstop_sequence
. La sequenza di interruzione non verrà inclusa nella risposta.temperature
: controlla la casualità dell'output. Utilizza valori più elevati per risposte più creative e valori più bassi per risposte più deterministiche. I valori possono variare da [0,0, 2,0].maxOutputTokens
: imposta il numero massimo di token da includere in un candidato.topP
: modifica il modo in cui il modello seleziona i token per l'output. I token vengono selezionati dal più probabile al meno probabile finché la somma delle loro probabilità non corrisponde al valoretopP
. Il valore predefinito ditopP
è 0,95.topK
: modifica il modo in cui il modello seleziona i token per l'output. Un valoretopK
pari a 1 indica che il token selezionato è il più probabile tra tutti i token nel vocabolario del modello, mentre un valoretopK
pari a 3 indica che il token successivo viene selezionato tra i tre più probabili utilizzando la temperatura. I token vengono ulteriormente filtrati in base atopP
e il token finale viene selezionato utilizzando il campionamento con temperatura.
Istruzioni di sistema
Le istruzioni di sistema ti consentono di indirizzare il comportamento di un modello in base al tuo caso d'uso specifico. Quando fornisci istruzioni di sistema, fornisci al modello un contesto aggiuntivo per aiutarlo a comprendere l'attività e generare risposte più personalizzate. Il modello deve rispettare le istruzioni di sistema durante l'intera interazione con l'utente, consentendoti di specificare il comportamento a livello di prodotto separatamente dai prompt forniti dagli utenti finali.
Puoi impostare le istruzioni di sistema quando inizializzazione il modello:
from google import genai
from google.genai import types
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
config=types.GenerateContentConfig(
system_instruction="You are a cat. Your name is Neko."),
contents="Hello there"
)
print(response.text)
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Hello there",
config: {
systemInstruction: "You are a cat. Your name is Neko.",
},
});
console.log(response.text);
}
await main();
// import packages here
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-2.0-flash")
model.SystemInstruction = &genai.Content{
Parts: []genai.Part{genai.Text(`
You are a cat. Your name is Neko.
`)},
}
resp, err := model.GenerateContent(ctx, genai.Text("Hello there"))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // helper function for printing content parts
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"system_instruction": {
"parts": [
{
"text": "You are a cat. Your name is Neko."
}
]
},
"contents": [
{
"parts": [
{
"text": "Hello there"
}
]
}
]
}'
Dopodiché, puoi inviare richieste al modello come di consueto.
Modelli supportati
L'intera famiglia di modelli Gemini supporta la generazione di testo. Per scoprire di più sui modelli e sulle relative funzionalità, consulta Modelli.
Suggerimenti per i prompt
Per i casi d'uso di base di generazione di testo, il prompt potrebbe non dover includere esempi di output, istruzioni di sistema o informazioni sulla formattazione. Si tratta di un approccio zero-shot. Per alcuni casi d'uso, un prompt one-shot o few-shot potrebbe produrre un output più in linea con le aspettative degli utenti. In alcuni casi, potrebbe essere opportuno fornire anche istruzioni di sistema per aiutare il modello a comprendere l'attività o a seguire linee guida specifiche.
Passaggi successivi
- Prova la guida introduttiva all'API Gemini di Colab.
- Scopri come utilizzare la comprensione visiva di Gemini per elaborare immagini e video.
- Scopri come utilizzare la comprensione audio di Gemini per elaborare i file audio.
- Scopri di più sulle strategie di prompting dei file multimodali.