Get started with the Gemini API
The Gemini API and Google AI Studio help you start working with Google's latest models and turn your ideas into applications that scale.
Python
import google.generativeai as genai
genai.configure(api_key="YOUR_API_KEY")
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Explain how AI works")
print(response.text)
Node.js
const { GoogleGenerativeAI } = require("@google/generative-ai");
const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Explain how AI works";
const result = await model.generateContent(prompt);
console.log(result.response.text());
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$YOUR_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[{"text": "Write a story about a magic backpack."}]
}]
}'
Meet the models
Explore the API
Explore long context
Input millions of tokens to Gemini models and derive understanding from unstructured images, videos, and documents.
Solve tasks with fine-tuning
Modify the behavior of Gemini models to adapt to specific tasks, recognize data, and solve problems. Tune models with your own data to make production deployments more robust and reliable.
Generate structured outputs
Constrain Gemini to respond with JSON, a structured data format suitable for automated processing.