Metin oluşturma

Gemini API, Gemini modellerinden yararlanarak metin, resim, video ve ses gibi çeşitli girişlerden metin çıkışı oluşturabilir.

Tek bir metin girişi alan temel bir örneği aşağıda bulabilirsiniz:

Python

from google import genai

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="How does AI work?"
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "How does AI work?",
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      genai.Text("Explain how AI works in a few words"),
      nil,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;

public class GenerateContentWithTextInput {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "How does AI work?", null);

  System.out.println(response.text());
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "How does AI work?"
          }
        ]
      }
    ]
  }'

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'How AI does work?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Gemini 2.5 ile düşünme

2.5 Flash ve Pro modellerinde kaliteyi artırmak için varsayılan olarak "düşünme" özelliği etkinleştirilmiştir. Bu özellik, çalışması daha uzun sürebilir ve jeton kullanımını artırabilir.

2.5 Flash'i kullanırken düşünme bütçesini sıfır olarak ayarlayarak düşünme özelliğini devre dışı bırakabilirsiniz.

Daha fazla ayrıntı için düşünme kılavuzuna bakın.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="How does AI work?",
    config=types.GenerateContentConfig(
        thinking_config=types.ThinkingConfig(thinking_budget=0) # Disables thinking
    ),
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "How does AI work?",
    config: {
      thinkingConfig: {
        thinkingBudget: 0, // Disables thinking
      },
    }
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      genai.Text("How does AI work?"),
      &genai.GenerateContentConfig{
        ThinkingConfig: &genai.ThinkingConfig{
            ThinkingBudget: int32(0), // Disables thinking
        },
      }
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.ThinkingConfig;

public class GenerateContentWithThinkingConfig {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentConfig config =
      GenerateContentConfig.builder()
          // Disables thinking
          .thinkingConfig(ThinkingConfig.builder().thinkingBudget(0))
          .build();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "How does AI work?", config);

  System.out.println(response.text());
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "How does AI work?"
          }
        ]
      }
    ],
    "generationConfig": {
      "thinkingConfig": {
        "thinkingBudget": 0
      }
    }
  }'

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'How AI does work?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Sistem talimatları ve diğer yapılandırmalar

Sistem talimatlarıyla Gemini modellerinin davranışını yönlendirebilirsiniz. Bunun için GenerateContentConfig nesnesi iletin.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    config=types.GenerateContentConfig(
        system_instruction="You are a cat. Your name is Neko."),
    contents="Hello there"
)

print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "Hello there",
    config: {
      systemInstruction: "You are a cat. Your name is Neko.",
    },
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  config := &genai.GenerateContentConfig{
      SystemInstruction: genai.NewContentFromText("You are a cat. Your name is Neko.", genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      genai.Text("Hello there"),
      config,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

public class GenerateContentWithSystemInstruction {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentConfig config =
      GenerateContentConfig.builder()
          .systemInstruction(
              Content.fromParts(Part.fromText("You are a cat. Your name is Neko.")))
          .build();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "Hello there", config);

  System.out.println(response.text());
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -d '{
    "system_instruction": {
      "parts": [
        {
          "text": "You are a cat. Your name is Neko."
        }
      ]
    },
    "contents": [
      {
        "parts": [
          {
            "text": "Hello there"
          }
        ]
      }
    ]
  }'

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const systemInstruction = {
    parts: [{
      text: 'You are a cat. Your name is Neko.'
    }]
  };

  const payload = {
    systemInstruction,
    contents: [
      {
        parts: [
          { text: 'Hello there' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

GenerateContentConfig nesnesi, sıcaklık gibi varsayılan oluşturma parametrelerini de geçersiz kılmanıza olanak tanır.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=["Explain how AI works"],
    config=types.GenerateContentConfig(
        temperature=0.1
    )
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "Explain how AI works",
    config: {
      temperature: 0.1,
    },
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  temp := float32(0.9)
  topP := float32(0.5)
  topK := float32(20.0)

  config := &genai.GenerateContentConfig{
    Temperature:       &temp,
    TopP:              &topP,
    TopK:              &topK,
    ResponseMIMEType:  "application/json",
  }

  result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.5-flash",
    genai.Text("What is the average size of a swallow?"),
    config,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;

public class GenerateContentWithConfig {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentConfig config = GenerateContentConfig.builder().temperature(0.1f).build();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "Explain how AI works", config);

  System.out.println(response.text());
}
}

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ],
    "generationConfig": {
      "stopSequences": [
        "Title"
      ],
      "temperature": 1.0,
      "topP": 0.8,
      "topK": 10
    }
  }'

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const generationConfig = {
    temperature: 1,
    topP: 0.95,
    topK: 40,
    responseMimeType: 'text/plain',
  };

  const payload = {
    generationConfig,
    contents: [
      {
        parts: [
          { text: 'Explain how AI works in a few words' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Yapılandırılabilir parametrelerin ve açıklamalarının tam listesi için API referansımızdaki GenerateContentConfig bölümüne bakın.

Çok formatlı girişler

Gemini API, çok formatlı girişleri destekler. Bu sayede metinle medya dosyalarını birleştirebilirsiniz. Aşağıdaki örnekte resim sağlama gösterilmektedir:

Python

from PIL import Image
from google import genai

client = genai.Client()

image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[image, "Tell me about this instrument"]
)
print(response.text)

JavaScript

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const image = await ai.files.upload({
    file: "/path/to/organ.png",
  });
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: [
      createUserContent([
        "Tell me about this instrument",
        createPartFromUri(image.uri, image.mimeType),
      ]),
    ],
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/organ.jpg"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
      genai.NewPartFromText("Tell me about this instrument"),
      &genai.Part{
          InlineData: &genai.Blob{
              MIMEType: "image/jpeg",
              Data:     imgData,
          },
      },
  }

  contents := []*genai.Content{
      genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      contents,
      nil,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

public class GenerateContentWithMultiModalInputs {
public static void main(String[] args) {

  Client client = new Client();

  Content content =
    Content.fromParts(
        Part.fromText("Tell me about this instrument"),
        Part.fromUri("/path/to/organ.jpg", "image/jpeg"));

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", content, null);

  System.out.println(response.text());
}
}

REST

# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"

# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT

cat > "$TEMP_JSON" << EOF
{
  "contents": [
    {
      "parts": [
        {
          "text": "Tell me about this instrument"
        },
        {
          "inline_data": {
            "mime_type": "image/jpeg",
            "data": "$(cat "$TEMP_B64")"
          }
        }
      ]
    }
  ]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d "@$TEMP_JSON"

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const imageUrl = 'http://image/url';
  const image = getImageData(imageUrl);
  const payload = {
    contents: [
      {
        parts: [
          { image },
          { text: 'Tell me about this instrument' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

function getImageData(url) {
  const blob = UrlFetchApp.fetch(url).getBlob();

  return {
    mimeType: blob.getContentType(),
    data: Utilities.base64Encode(blob.getBytes())
  };
}

Resim sağlamanın alternatif yöntemleri ve daha gelişmiş resim işleme hakkında bilgi edinmek için Resim Anlama Rehberimizi inceleyin. API, doküman, video ve ses girişlerini ve bu girişlerin anlaşılmasını da destekler.

Yanıtları akış şeklinde gösterme

Varsayılan olarak, model yalnızca tüm oluşturma işlemi tamamlandıktan sonra yanıt verir.

Daha akıcı etkileşimler için, GenerateContentResponse örneklerini oluşturuldukça artımlı olarak almak üzere akışı kullanın.

Python

from google import genai

client = genai.Client()

response = client.models.generate_content_stream(
    model="gemini-2.5-flash",
    contents=["Explain how AI works"]
)
for chunk in response:
    print(chunk.text, end="")

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContentStream({
    model: "gemini-2.5-flash",
    contents: "Explain how AI works",
  });

  for await (const chunk of response) {
    console.log(chunk.text);
  }
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  stream := client.Models.GenerateContentStream(
      ctx,
      "gemini-2.5-flash",
      genai.Text("Write a story about a magic backpack."),
      nil,
  )

  for chunk, _ := range stream {
      part := chunk.Candidates[0].Content.Parts[0]
      fmt.Print(part.Text)
  }
}

Java

import com.google.genai.Client;
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;

public class GenerateContentStream {
public static void main(String[] args) {

  Client client = new Client();

  ResponseStream<GenerateContentResponse> responseStream =
    client.models.generateContentStream(
        "gemini-2.5-flash", "Write a story about a magic backpack.", null);

  for (GenerateContentResponse res : responseStream) {
    System.out.print(res.text());
  }

  // To save resources and avoid connection leaks, it is recommended to close the response
  // stream after consumption (or using try block to get the response stream).
  responseStream.close();
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent?alt=sse" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  --no-buffer \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ]
  }'

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'Explain how AI works' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Çok adımlı görüşmeler (Chat)

SDK'larımız, birden fazla istem ve yanıt turunu bir sohbette toplama işlevi sunarak sohbet geçmişini kolayca takip etmenizi sağlar.

Python

from google import genai

client = genai.Client()
chat = client.chats.create(model="gemini-2.5-flash")

response = chat.send_message("I have 2 dogs in my house.")
print(response.text)

response = chat.send_message("How many paws are in my house?")
print(response.text)

for message in chat.get_history():
    print(f'role - {message.role}',end=": ")
    print(message.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.5-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const response1 = await chat.sendMessage({
    message: "I have 2 dogs in my house.",
  });
  console.log("Chat response 1:", response1.text);

  const response2 = await chat.sendMessage({
    message: "How many paws are in my house?",
  });
  console.log("Chat response 2:", response2.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  history := []*genai.Content{
      genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
      genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
  }

  chat, _ := client.Chats.Create(ctx, "gemini-2.5-flash", nil, history)
  res, _ := chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})

  if len(res.Candidates) > 0 {
      fmt.Println(res.Candidates[0].Content.Parts[0].Text)
  }
}

Java

import com.google.genai.Chat;
import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;

public class MultiTurnConversation {
public static void main(String[] args) {

  Client client = new Client();
  Chat chatSession = client.chats.create("gemini-2.5-flash");

  GenerateContentResponse response =
      chatSession.sendMessage("I have 2 dogs in my house.");
  System.out.println("First response: " + response.text());

  response = chatSession.sendMessage("How many paws are in my house?");
  System.out.println("Second response: " + response.text());

  // Get the history of the chat session.
  // Passing 'true' to getHistory() returns the curated history, which excludes
  // empty or invalid parts.
  // Passing 'false' here would return the comprehensive history, including
  // empty or invalid parts.
  ImmutableList<Content> history = chatSession.getHistory(true);
  System.out.println("History: " + history);
}
}

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        role: 'user',
        parts: [
          { text: 'Hello' },
        ],
      },
      {
        role: 'model',
        parts: [
          { text: 'Great to meet you. What would you like to know?' },
        ],
      },
      {
        role: 'user',
        parts: [
          { text: 'I have two dogs in my house. How many paws are in my house?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Yayın, çok adımlı görüşmeler için de kullanılabilir.

Python

from google import genai

client = genai.Client()
chat = client.chats.create(model="gemini-2.5-flash")

response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
    print(chunk.text, end="")

response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
    print(chunk.text, end="")

for message in chat.get_history():
    print(f'role - {message.role}', end=": ")
    print(message.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.5-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const stream1 = await chat.sendMessageStream({
    message: "I have 2 dogs in my house.",
  });
  for await (const chunk of stream1) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }

  const stream2 = await chat.sendMessageStream({
    message: "How many paws are in my house?",
  });
  for await (const chunk of stream2) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  history := []*genai.Content{
      genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
      genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
  }

  chat, _ := client.Chats.Create(ctx, "gemini-2.5-flash", nil, history)
  stream := chat.SendMessageStream(ctx, genai.Part{Text: "How many paws are in my house?"})

  for chunk, _ := range stream {
      part := chunk.Candidates[0].Content.Parts[0]
      fmt.Print(part.Text)
  }
}

Java

import com.google.genai.Chat;
import com.google.genai.Client;
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;

public class MultiTurnConversationWithStreaming {
public static void main(String[] args) {

  Client client = new Client();
  Chat chatSession = client.chats.create("gemini-2.5-flash");

  ResponseStream<GenerateContentResponse> responseStream =
      chatSession.sendMessageStream("I have 2 dogs in my house.", null);

  for (GenerateContentResponse response : responseStream) {
    System.out.print(response.text());
  }

  responseStream = chatSession.sendMessageStream("How many paws are in my house?", null);

  for (GenerateContentResponse response : responseStream) {
    System.out.print(response.text());
  }

  // Get the history of the chat session. History is added after the stream
  // is consumed and includes the aggregated response from the stream.
  System.out.println("History: " + chatSession.getHistory(false));
}
}

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent?alt=sse \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'

Apps Komut Dosyası

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        role: 'user',
        parts: [
          { text: 'Hello' },
        ],
      },
      {
        role: 'model',
        parts: [
          { text: 'Great to meet you. What would you like to know?' },
        ],
      },
      {
        role: 'user',
        parts: [
          { text: 'I have two dogs in my house. How many paws are in my house?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Desteklenen modeller

Gemini ailesindeki tüm modeller metin oluşturmayı destekler. Modeller ve özellikleri hakkında daha fazla bilgi edinmek için Modeller sayfasını ziyaret edin.

En iyi uygulamalar

İstem ipuçları

Temel metin oluşturma için örnekler, sistem talimatları veya belirli biçimlendirme gerekmeden genellikle sıfır görevli istem yeterlidir.

Daha özelleştirilmiş çıkışlar için:

  • Modeli yönlendirmek için Sistem talimatlarını kullanın.
  • Modeli yönlendirmek için birkaç örnek giriş ve çıkış sağlayın. Bu yönteme genellikle çok görevli istem denir.

Daha fazla ipucu için istem mühendisliği kılavuzumuza göz atın.

Yapılandırılmış çıkış

Bazı durumlarda JSON gibi yapılandırılmış çıkışlar gerekebilir. Nasıl yapılacağını öğrenmek için yapılandırılmış çıktı kılavuzumuzu inceleyin.

Sırada ne var?