MediaPipe Model Maker は、データやアプリケーションで使用できるように既存の機械学習(ML)モデルをカスタマイズするためのツールです。このツールは、新しい ML モデルを構築してトレーニングするよりも高速な代替手段として使用できます。Model Maker は、転移学習という ML トレーニング手法を使用します。この手法では、既存のモデルを新しいデータで再トレーニングします。この手法では、既存のモデルロジックの大部分が再利用されます。つまり、新しいモデルのトレーニングよりも時間が短くなり、少ないデータで実行できます。
Model Maker は、オブジェクト検出、ジェスチャー認識、画像、テキスト、音声データの分類器など、さまざまな種類のモデルで動作します。このツールは、データを特定のカテゴリに分類するモデルの最後の数レイヤを削除してモデルを再トレーニングし、指定された新しいデータを使用してそれらのレイヤを再構築します。Model Maker は、精度とパフォーマンスを向上させるためにモデルレイヤを微調整するオプションもサポートしています。
Model Maker でモデルを再トレーニングしても、元の ML モデルで解決するために構築されたものは、それらのジョブが類似している場合でも変更できません。たとえば、これらのタスクにいくつかの類似点があったとしても、このツールを使用して画像分類モデルにオブジェクト検出を実行させることはできません。
始める
MediaPipe Model Maker の使用を開始するには、MediaPipe ソリューション向けのソリューションのカスタマイズ チュートリアル(画像分類など)のいずれかを実行します。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-07-24 UTC。"],[],[],null,["# MediaPipe Model Maker is a tool for customizing existing machine learning (ML)\nmodels to work with your data and applications. You can use this tool as a\nfaster alternative to building and training a new ML model. Model Maker uses an\nML training technique called\n[transfer learning](https://en.wikipedia.org/wiki/Transfer_learning) which\nretrains existing models with new data. This technique re-uses a significant\nportion of the existing model logic, which means training takes less time than\ntraining a new model, and can be done with less data.\n\nModel Maker works on various types of models including, object detection,\ngesture recognition, or classifiers for images, text, or audio data. The tool\nretrains models by removing the last few layers of the model that classify data\ninto specific categories, and rebuilds those layers using new data you provide.\nModel Maker also supports some option to fine tune model layers to improve\naccuracy and performance.\n\n**Figure 1. Model Maker removes the final layers of an existing model and\nrebuilds them with new data.**\n\nRetraining a model using Model Maker generally makes the model smaller,\nparticularly if you retrain the new model to recognize fewer things. This\nmeans you can use Model Maker to create more focused models that work better for\nyour application. The tool can also help you apply ML techniques like\nquantization so your model uses less resources and runs more efficiently.\n\nTraining data requirements\n--------------------------\n\nYou can use Model Maker to retrain models with significantly less data than\ntraining a new model. When retraining a model with new data, you should aim to\nhave approximately 100 data samples for each trained class. For example, if you\nare retraining an image classification model to recognize cats, dogs, and\nparrots, you should have around 100 images of cats, 100 images of dogs, and 100\nimages of parrots. Depending on your application, you may be able to retrain a\nuseful model with even less data per category, although a larger dataset\ngenerally improves the accuracy of your model. When creating your training\ndataset, remember that your training data gets split up during the retraining\nprocess, typically 80% for training, 10% for testing, and the remainder for\nvalidation.\n\nLimitations of customization\n----------------------------\n\nSince the retraining process removes the previous classification layers, the\nresulting model can only recognize items, or classes, provided in the new data.\nIf the old model was trained to recognize 30 different item classes, and you use\nModel Maker to retrain with data for 10 different items, the resulting model is\nonly able to recognize those 10 new items.\n\nRetraining a model with Model Maker cannot change what the original ML model\nwas built to solve, even if those jobs are similar. For example, you can't use\nthe tool to make an image classification model perform object detection, even\nthough those tasks share some similarity.\n\nGet started\n-----------\n\nYou can start using MediaPipe Model Maker by running one of the solution\nCustomization tutorials for MediaPipe Solutions, such as\n[Image Classification](/edge/mediapipe/solutions/customization/image_classifier)"]]