งานเครื่องมือจุดสังเกตใบหน้าของ MediaPipe ช่วยให้คุณสามารถตรวจจับจุดสังเกตของใบหน้าและการแสดงความรู้สึกทางสีหน้าใน รูปภาพและวิดีโอ คุณสามารถใช้งานนี้เพื่อระบุการแสดงออกทางสีหน้าของมนุษย์ ใช้ฟิลเตอร์และเอฟเฟกต์ใบหน้า และสร้างรูปโปรไฟล์เสมือนจริง งานนี้ใช้ โมเดลแมชชีนเลิร์นนิง (ML) ที่สามารถทำงานกับรูปภาพเดียวหรือภาพต่อเนื่อง รูปภาพ งานจะแสดงจุดสังเกตของใบหน้า 3 มิติ ผสมผสานรูปร่าง คะแนน (ค่าสัมประสิทธิ์ที่แสดงการแสดงออกทางสีหน้า) เพื่ออนุมานรายละเอียดเกี่ยวกับใบหน้า พื้นผิวแบบเรียลไทม์ และเมทริกซ์การแปลงเพื่อประมวลผล การเปลี่ยนรูปแบบที่จําเป็นสําหรับการแสดงผลเอฟเฟกต์
ตัวอย่างโค้ดที่อธิบายไว้ในวิธีการเหล่านี้มีอยู่ใน GitHub สำหรับข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ โมเดล และตัวเลือกการกำหนดค่า ของงานนี้ โปรดดูภาพรวม
ตัวอย่างโค้ด
โค้ดตัวอย่างงาน MediaPipe Tasks เป็นการใช้งานที่เรียบง่ายของเครื่องมือจุดสังเกตใบหน้า แอปสำหรับ Android ตัวอย่างนี้ใช้กล้องบนอุปกรณ์ Android จริงเพื่อ ตรวจจับใบหน้าในสตรีมวิดีโอแบบต่อเนื่อง แอปยังตรวจจับใบหน้าใน รูปภาพและวิดีโอจากแกลเลอรีของอุปกรณ์
คุณสามารถใช้แอปนี้เป็นจุดเริ่มต้นสำหรับแอป Android ของคุณเอง หรืออ้างอิงถึงแอปนั้น เมื่อแก้ไขแอปที่มีอยู่ โค้ดตัวอย่างเครื่องมือจุดสังเกตใบหน้าที่โฮสต์บน GitHub
ดาวน์โหลดโค้ด
วิธีการต่อไปนี้แสดงวิธีสร้างสำเนาตัวอย่างในเครื่อง โดยใช้เครื่องมือบรรทัดคำสั่ง git
วิธีดาวน์โหลดโค้ดตัวอย่าง
- โคลนที่เก็บ Git โดยใช้คำสั่งต่อไปนี้
git clone https://github.com/google-ai-edge/mediapipe-samples
- นอกจากนี้ คุณสามารถกำหนดค่าอินสแตนซ์ Git ให้ใช้การชำระเงินแบบกระจัดกระจายเพื่อให้คุณมี
เฉพาะไฟล์ของแอปตัวอย่างเครื่องมือจุดสังเกตใบหน้าเท่านั้น
cd mediapipe git sparse-checkout init --cone git sparse-checkout set examples/face_landmarker/android
หลังจากสร้างโค้ดตัวอย่างในเวอร์ชันในเครื่องแล้ว คุณจะนำเข้าโปรเจ็กต์ได้ ลงใน Android Studio และเรียกใช้แอป โปรดดูวิธีการในคู่มือการตั้งค่าสำหรับ Android
องค์ประกอบสำคัญ
ไฟล์ต่อไปนี้มีโค้ดที่สำคัญสำหรับตัวอย่างจุดสังเกตของใบหน้านี้ แอปพลิเคชัน:
- FaceLandmarkerHelper.kt - เริ่มต้นจุดสังเกตของใบหน้า รวมถึงจัดการโมเดลและมอบสิทธิ์ มากมาย
- CameraFragment.kt - จัดการกล้องของอุปกรณ์และประมวลผลข้อมูลอินพุตรูปภาพและวิดีโอ
- GalleryFragment.kt - โต้ตอบกับ
OverlayView
เพื่อแสดงรูปภาพหรือวิดีโอเอาต์พุต - OverlayView.kt - ใช้จอแสดงผลที่มีตาข่ายสำหรับใบหน้าที่ตรวจพบ
ตั้งค่า
ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์ และ เป็นโปรเจ็กต์โค้ดสำหรับใช้จุดสังเกตของใบหน้าโดยเฉพาะ สำหรับข้อมูลทั่วไปเกี่ยวกับ การตั้งค่าสภาพแวดล้อมในการพัฒนาซอฟต์แวร์ของคุณสำหรับการใช้งาน MediaPipe ซึ่งรวมถึง ข้อกำหนดด้านเวอร์ชันของแพลตฟอร์ม โปรดดูคู่มือการตั้งค่าสำหรับ Android
การอ้างอิง
งานเครื่องมือจุดสังเกตใบหน้าใช้ไลบรารี com.google.mediapipe:tasks-vision
เพิ่ม
จะขึ้นอยู่กับไฟล์ build.gradle
ของแอป Android
dependencies {
implementation 'com.google.mediapipe:tasks-vision:latest.release'
}
รุ่น
งานเครื่องมือจุดสังเกตใบหน้าของ MediaPipe ต้องการแพ็กเกจโมเดลที่ผ่านการฝึกซึ่งสามารถทำงานร่วมกับ งานนี้ สำหรับข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกและพร้อมใช้งานในเครื่องมือจุดสังเกตใบหน้า ดูภาพรวมงานส่วนโมเดล
เลือกและดาวน์โหลดโมเดล และเก็บไว้ในไดเรกทอรีโปรเจ็กต์ของคุณ:
<dev-project-root>/src/main/assets
ระบุเส้นทางของโมเดลภายในพารามิเตอร์ ModelAssetPath
ใน
โค้ดตัวอย่าง โมเดลจะกำหนดไว้ใน
FaceLandmarkerHelper.kt
ไฟล์:
baseOptionsBuilder.setModelAssetPath(MP_FACE_LANDMARKER_TASK)
สร้างงาน
งานเครื่องมือจุดสังเกตใบหน้าของ MediaPipe ใช้ฟังก์ชัน createFromOptions()
เพื่อตั้งค่า
งาน ฟังก์ชัน createFromOptions()
จะยอมรับค่าสำหรับการกำหนดค่า
ตัวเลือก โปรดดูข้อมูลเพิ่มเติมเกี่ยวกับตัวเลือกการกําหนดค่าได้ที่การกําหนดค่า
ตัวเลือกเพิ่มเติม
เครื่องมือเน้นใบหน้าสนับสนุนการป้อนข้อมูลประเภทต่างๆ ได้แก่ ภาพนิ่ง วิดีโอ ไฟล์ และสตรีมวิดีโอสด คุณต้องระบุโหมดการทำงาน ให้สอดคล้องกับประเภทข้อมูลที่คุณป้อนเมื่อสร้างงาน เลือกแท็บ สำหรับประเภทข้อมูลอินพุตเพื่อดูวิธีสร้างงานและเรียกใช้ การอนุมาน
รูปภาพ
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_FACE_LANDMARKER_TASK) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceLandmarker.FaceLandmarkerOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinFaceDetectionConfidence(minFaceDetectionConfidence) .setMinTrackingConfidence(minFaceTrackingConfidence) .setMinFacePresenceConfidence(minFacePresenceConfidence) .setNumFaces(maxNumFaces) .setRunningMode(RunningMode.IMAGE) val options = optionsBuilder.build() FaceLandmarker = FaceLandmarker.createFromOptions(context, options)
วิดีโอ
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_FACE_LANDMARKER_TASK) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceLandmarker.FaceLandmarkerOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinFaceDetectionConfidence(minFaceDetectionConfidence) .setMinTrackingConfidence(minFaceTrackingConfidence) .setMinFacePresenceConfidence(minFacePresenceConfidence) .setNumFaces(maxNumFaces) .setRunningMode(RunningMode.VIDEO) val options = optionsBuilder.build() FaceLandmarker = FaceLandmarker.createFromOptions(context, options)
สตรีมแบบสด
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_FACE_LANDMARKER_TASK) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceLandmarker.FaceLandmarkerOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinFaceDetectionConfidence(minFaceDetectionConfidence) .setMinTrackingConfidence(minFaceTrackingConfidence) .setMinFacePresenceConfidence(minFacePresenceConfidence) .setNumFaces(maxNumFaces) .setResultListener(this::returnLivestreamResult) .setErrorListener(this::returnLivestreamError) .setRunningMode(RunningMode.LIVE_STREAM) val options = optionsBuilder.build() FaceLandmarker = FaceLandmarker.createFromOptions(context, options)
การใช้โค้ดตัวอย่างของเครื่องมือเข้ารหัสใบหน้าจะช่วยให้ผู้ใช้สลับระหว่าง
โหมดการประมวลผลข้อมูล วิธีนี้ทำให้โค้ดการสร้างงานซับซ้อนขึ้นและ
อาจไม่เหมาะกับกรณีการใช้งานของคุณ คุณดูรหัสนี้ได้ใน
setupFaceLandmarker()
ในฟังก์ชัน
FaceLandmarkerHelper.kt
ตัวเลือกการกำหนดค่า
งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอป Android
ชื่อตัวเลือก | คำอธิบาย | ช่วงค่า | ค่าเริ่มต้น |
---|---|---|---|
runningMode |
ตั้งค่าโหมดการทำงานสำหรับงาน มี 3 แบบ
โหมด: รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ LIVE_STREAM: โหมดสำหรับสตรีมแบบสดของอินพุต เช่น ข้อมูลจากกล้อง ในโหมดนี้ resultsListener ต้องเป็น ถูกเรียกให้ตั้งค่า Listener เพื่อรับผลลัพธ์ แบบไม่พร้อมกัน |
{IMAGE, VIDEO, LIVE_STREAM } |
IMAGE |
numFaces |
จำนวนใบหน้าสูงสุดที่แท็กสามารถตรวจจับได้
FaceLandmarker ใช้การปรับให้เรียบเฉพาะเมื่อ
ตั้งค่า num_faces เป็น 1
|
Integer > 0 |
1 |
minFaceDetectionConfidence |
คะแนนความเชื่อมั่นขั้นต่ำสำหรับการตรวจจับใบหน้า ถือว่าประสบความสำเร็จ | Float [0.0,1.0] |
0.5 |
minFacePresenceConfidence |
คะแนนความเชื่อมั่นขั้นต่ำในการแสดงใบหน้า ในการตรวจจับจุดสังเกตของใบหน้า | Float [0.0,1.0] |
0.5 |
minTrackingConfidence |
คะแนนความเชื่อมั่นขั้นต่ำสำหรับการติดตามใบหน้า จะถือว่าประสบความสำเร็จ | Float [0.0,1.0] |
0.5 |
outputFaceBlendshapes |
เครื่องมือทำเครื่องหมายใบหน้าจะแสดงการเบลนด์ภาพของใบหน้าหรือไม่ ใบหน้าเบลนด์ใช้สำหรับการแสดงภาพโมเดลใบหน้า 3 มิติ | Boolean |
False |
outputFacialTransformationMatrixes |
FaceLandmarker แสดงเอาต์พุตใบหน้าหรือไม่ ของเมทริกซ์การเปลี่ยนรูปแบบ FaceLandmarker ใช้ เมทริกซ์ในการแปลงจุดสังเกตของใบหน้าจากรูปแบบใบหน้า Canonical เป็น ใบหน้าที่ตรวจพบ เพื่อให้ผู้ใช้สามารถใช้เอฟเฟกต์กับจุดสังเกตที่ตรวจพบ | Boolean |
False |
resultListener |
ตั้งค่า Listener ผลลัพธ์เพื่อรับผลลัพธ์ของจุดสังเกต
ไม่พร้อมกันเมื่อ FaceLandmarker อยู่ในโหมดสตรีมแบบสด
ใช้ได้เมื่อตั้งค่าโหมดวิ่งเป็น LIVE_STREAM เท่านั้น |
ResultListener |
N/A |
errorListener |
ตั้งค่า Listener ข้อผิดพลาดที่ไม่บังคับ | ErrorListener |
N/A |
เตรียมข้อมูล
เครื่องมือไฮไลต์ใบหน้าใช้งานได้กับรูปภาพ ไฟล์วิดีโอ และสตรีมวิดีโอสด งาน จัดการการประมวลผลอินพุตข้อมูลล่วงหน้า ซึ่งรวมถึงการปรับขนาด การหมุน และค่า การแปลงเป็นรูปแบบมาตรฐาน
โค้ดต่อไปนี้แสดงวิธีส่งต่อข้อมูลสำหรับการประมวลผล เหล่านี้ ตัวอย่างจะให้รายละเอียดเกี่ยวกับวิธีจัดการข้อมูลจากรูปภาพ ไฟล์วิดีโอ และการเผยแพร่ สตรีมวิดีโอ
รูปภาพ
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(image).build()
วิดีโอ
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage val argb8888Frame = if (frame.config == Bitmap.Config.ARGB_8888) frame else frame.copy(Bitmap.Config.ARGB_8888, false) // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(argb8888Frame).build()
สตรีมแบบสด
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(rotatedBitmap).build()
ในโค้ดตัวอย่างของเครื่องมือทำเครื่องหมายใบหน้า การจัดเตรียมข้อมูลจะดำเนินการใน
FaceLandmarkerHelper.kt
เรียกใช้งาน
ใช้เมธอด
FaceLandmarker.detect...()
ที่เฉพาะเจาะจงสำหรับประเภทข้อมูลดังกล่าว ใช้
detect()
สำหรับรูปภาพแต่ละภาพ detectForVideo()
สำหรับเฟรมในไฟล์วิดีโอ
และ detectAsync()
สำหรับสตรีมวิดีโอ เมื่อคุณดำเนินการตรวจหาใน
สตรีมวิดีโอ โปรดตรวจสอบว่าคุณได้เรียกใช้การตรวจจับในชุดข้อความแยกต่างหากเพื่อหลีกเลี่ยงการตรวจพบ
บล็อกชุดข้อความอินเทอร์เฟซผู้ใช้
ตัวอย่างโค้ดต่อไปนี้แสดงตัวอย่างง่ายๆ ของวิธีเรียกใช้เครื่องมือจุดสังเกตใบหน้า ในโหมดข้อมูลที่แตกต่างกันเหล่านี้
รูปภาพ
val result = FaceLandmarker.detect(mpImage)
วิดีโอ
val timestampMs = i * inferenceIntervalMs FaceLandmarker.detectForVideo(mpImage, timestampMs) .let { detectionResult -> resultList.add(detectionResult) }
สตรีมแบบสด
val mpImage = BitmapImageBuilder(rotatedBitmap).build() val frameTime = SystemClock.uptimeMillis() FaceLandmarker.detectAsync(mpImage, frameTime)
โปรดทราบดังต่อไปนี้
- เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด คุณต้องระบุ การประทับเวลาของเฟรมอินพุตเป็นงานเครื่องมือจุดสังเกตใบหน้า
- เมื่อทำงานในโหมดภาพหรือวิดีโอ งานเครื่องมือไฮไลต์ใบหน้าจะบล็อก ชุดข้อความปัจจุบันจนกว่าจะประมวลผลรูปภาพหรือเฟรมอินพุตเสร็จสิ้น ถึง หลีกเลี่ยงการบล็อกอินเทอร์เฟซผู้ใช้ ใช้การประมวลผลในเบื้องหลัง ชุดข้อความ
- เมื่อทำงานในโหมดสตรีมแบบสด งานเครื่องมือจุดสังเกตใบหน้าจะส่งคืน ทันทีและไม่บล็อกชุดข้อความปัจจุบัน ซึ่งจะเรียกใช้ผลลัพธ์ Listener ของคุณพร้อมผลการตรวจหาทุกครั้งที่เสร็จสิ้นการประมวลผล เฟรมอินพุต
ในโค้ดตัวอย่างของเครื่องมือจุดสังเกตใบหน้า ค่า detect
, detectForVideo
และ
มีการกำหนดฟังก์ชัน detectAsync
ในฟังก์ชัน
FaceLandmarkerHelper.kt
จัดการและแสดงผลลัพธ์
เครื่องมือจุดสังเกตใบหน้าจะแสดงออบเจ็กต์ FaceLandmarkerResult
สำหรับการตรวจจับแต่ละรายการ
วิ่งได้ วัตถุผลลัพธ์มีตาข่ายใบหน้าสำหรับใบหน้าที่ตรวจพบแต่ละรายการ
พิกัดสำหรับจุดสังเกตของใบหน้าแต่ละจุด (ไม่บังคับ) ออบเจ็กต์ผลลัพธ์ยังสามารถ
มีรูปร่างผสมซึ่งแสดงถึงการแสดงออกทางสีหน้าและใบหน้า
เมทริกซ์การเปลี่ยนรูปแบบเพื่อใช้เอฟเฟ็กต์ใบหน้ากับจุดสังเกตที่ตรวจพบ
ตัวอย่างต่อไปนี้แสดงตัวอย่างข้อมูลเอาต์พุตจากงานนี้
FaceLandmarkerResult:
face_landmarks:
NormalizedLandmark #0:
x: 0.5971359014511108
y: 0.485361784696579
z: -0.038440968841314316
NormalizedLandmark #1:
x: 0.3302789330482483
y: 0.29289937019348145
z: -0.09489090740680695
... (478 landmarks for each face)
face_blendshapes:
browDownLeft: 0.8296722769737244
browDownRight: 0.8096957206726074
browInnerUp: 0.00035583582939580083
browOuterUpLeft: 0.00035752105759456754
... (52 blendshapes for each face)
facial_transformation_matrixes:
[9.99158978e-01, -1.23036895e-02, 3.91213447e-02, -3.70770246e-01]
[1.66496094e-02, 9.93480563e-01, -1.12779640e-01, 2.27719707e+01]
...
รูปภาพต่อไปนี้แสดงการแสดงภาพเอาต์พุตของงาน
โค้ดตัวอย่างเครื่องมือจุดสังเกตใบหน้าแสดงวิธีแสดงผลลัพธ์
จากงาน ให้ดู
OverlayView
เพื่อดูรายละเอียดเพิ่มเติม