Guía de clasificación de imágenes para iOS

La tarea Clasificador de imágenes te permite realizar la clasificación de imágenes. Puedes usar esta tarea para identificar lo que representa una imagen entre un conjunto de categorías definidas durante el tiempo de entrenamiento. En estas instrucciones, se muestra cómo usar el clasificador de imágenes en apps para iOS. La muestra de código que se describe en estas instrucciones está disponible en GitHub.

Puedes ver esta tarea en acción en esta demo web. Para obtener más información sobre las funciones, los modelos y las opciones de configuración de esta tarea, consulta la descripción general.

Ejemplo de código

El código de ejemplo de tareas de MediaPipe es una implementación básica de una app de clasificación de imágenes para iOS. En el ejemplo, se usa la cámara de un dispositivo iOS físico para clasificar objetos de forma continua. También se pueden usar imágenes y videos de la galería del dispositivo para clasificar objetos de forma estática.

Puedes usar la app como punto de partida para tu propia app para iOS o consultarla cuando modifiques una app existente. El código de ejemplo de Image Classifier se aloja en GitHub.

Descarga el código

En las siguientes instrucciones, se muestra cómo crear una copia local del código de ejemplo con la herramienta de línea de comandos git.

Para descargar el código de ejemplo, haz lo siguiente:

  1. Clona el repositorio de git con el siguiente comando:

    git clone https://github.com/google-ai-edge/mediapipe-samples
    
  2. De manera opcional, configura tu instancia de Git para que use el resultado disperso, de modo que solo tengas los archivos de la app de ejemplo del clasificador de imágenes:

    cd mediapipe
    git sparse-checkout init --cone
    git sparse-checkout set examples/image_classification/ios/
    

Después de crear una versión local del código de ejemplo, puedes instalar la biblioteca de tareas de MediaPipe, abrir el proyecto con Xcode y ejecutar la app. Para obtener instrucciones, consulta la Guía de configuración para iOS.

Componentes clave

Los siguientes archivos contienen el código crucial para la aplicación de ejemplo del clasificador de imágenes:

Configuración

En esta sección, se describen los pasos clave para configurar tu entorno de desarrollo y codificar proyectos para usar Image Classifier. Si deseas obtener información general sobre cómo configurar tu entorno de desarrollo para usar tareas de MediaPipe, incluidos los requisitos de la versión de la plataforma, consulta la Guía de configuración para iOS.

Dependencias

Image Classifier usa la biblioteca MediaPipeTasksVision, que se debe instalar con CocoaPods. La biblioteca es compatible con apps de Swift y Objective-C, y no requiere ninguna configuración adicional específica del lenguaje.

Para obtener instrucciones para instalar CocoaPods en macOS, consulta la guía de instalación de CocoaPods. Para obtener instrucciones sobre cómo crear un Podfile con los pods necesarios para tu app, consulta Cómo usar CocoaPods.

Agrega el pod MediaPipeTasksVision en Podfile con el siguiente código:

target 'MyImageClassifierApp' do
  use_frameworks!
  pod 'MediaPipeTasksVision'
end

Si tu app incluye destinos de pruebas de unidades, consulta la Guía de configuración para iOS para obtener información adicional sobre cómo configurar tu Podfile.

Modelo

La tarea del clasificador de imágenes de MediaPipe requiere un modelo entrenado que sea compatible con esta tarea. Si deseas obtener más información sobre los modelos entrenados disponibles para el clasificador de imágenes, consulta la sección Modelos de la descripción general de la tarea.

Selecciona y descarga un modelo, y agrégalo al directorio de tu proyecto con Xcode. Para obtener instrucciones sobre cómo agregar archivos a tu proyecto de Xcode, consulta Cómo administrar archivos y carpetas en tu proyecto de Xcode.

Usa la propiedad BaseOptions.modelAssetPath para especificar la ruta de acceso al modelo en tu paquete de aplicación. Para ver un ejemplo de código, consulta la siguiente sección.

Crea la tarea

Para crear la tarea de Image Classifier, llama a uno de sus inicializadores. El inicializador ImageClassifier(options:) establece valores para las opciones de configuración, incluidos el modo de ejecución, la configuración regional de los nombres visibles, la cantidad máxima de resultados, el umbral de confianza, la lista de entidades permitidas de las categorías y la lista de bloqueo.

Si no necesitas un clasificador de imágenes inicializado con opciones de configuración personalizadas, puedes usar el inicializador ImageClassifier(modelPath:) para crear un clasificador de imágenes con las opciones predeterminadas. Para obtener más información sobre las opciones de configuración, consulta Descripción general de la configuración.

La tarea del clasificador de imágenes admite 3 tipos de datos de entrada: imágenes fijas, archivos de video y transmisiones de video en vivo. De forma predeterminada, ImageClassifier(modelPath:) inicializa una tarea para imágenes estáticas. Si deseas que tu tarea se inicialice para procesar archivos de video o transmisiones de video en vivo, usa ImageClassifier(options:) para especificar el modo de ejecución de video o transmisión en vivo. El modo de transmisión en vivo también requiere la opción de configuración imageClassifierLiveStreamDelegate adicional, que permite que el clasificador de imágenes entregue resultados de clasificación de imágenes al delegado de forma asíncrona.

Elige la pestaña correspondiente a tu modo de ejecución para ver cómo crear la tarea y ejecutar la inferencia.

Swift

Imagen

import MediaPipeTasksVision

let modelPath = Bundle.main.path(forResource: "model",
                                      ofType: "tflite")

let options = ImageClassifierOptions()
options.baseOptions.modelAssetPath = modelPath
options.runningMode = .image
options.maxResults = 5

let imageClassifier = try ImageClassifier(options: options)
    

Video

import MediaPipeTasksVision

let modelPath = Bundle.main.path(forResource: "model",
                                      ofType: "tflite")

let options = ImageClassifierOptions()
options.baseOptions.modelAssetPath = modelPath
options.runningMode = .video
options.maxResults = 5

let imageClassifier = try ImageClassifier(options: options)
    

Transmisión en vivo

import MediaPipeTasksVision

// Class that conforms to the `ImageClassifierLiveStreamDelegate` protocol and
// implements the method that the image classifier calls once it
// finishes performing classification on each input frame.
class ImageClassifierResultProcessor: NSObject, ImageClassifierLiveStreamDelegate {

   func imageClassifier(
    _ imageClassifier: ImageClassifier,
    didFinishClassification result: ImageClassifierResult?,
    timestampInMilliseconds: Int,
    error: Error?) {

    // Process the image classifier result or errors here.

  }
}

let modelPath = Bundle.main.path(
  forResource: "model",
  ofType: "tflite")

let options = ImageClassifierOptions()
options.baseOptions.modelAssetPath = modelPath
options.runningMode = .liveStream
options.maxResults = 5

// Assign an object of the class to the `imageClassifierLiveStreamDelegate`
// property.
let processor = ImageClassifierResultProcessor()
options.imageClassifierLiveStreamDelegate = processor

let imageClassifier = try ImageClassifier(options: options)
    

Objective-C

Imagen

@import MediaPipeTasksVision;

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model"
                                                      ofType:@"tflite"];

MPPImageClassifierOptions *options = [[MPPImageClassifierOptions alloc] init];
options.baseOptions.modelAssetPath = modelPath;
options.runningMode = MPPRunningModeImage;
options.maxResults = 5;

MPPImageClassifier *imageClassifier =
      [[MPPImageClassifier alloc] initWithOptions:options error:nil];
    

Video

@import MediaPipeTasksVision;

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model"
                                                      ofType:@"tflite"];

MPPImageClassifierOptions *options = [[MPPImageClassifierOptions alloc] init];
options.baseOptions.modelAssetPath = modelPath;
options.runningMode = MPPRunningModeVideo;
options.maxResults = 5;

MPPImageClassifier *imageClassifier =
      [[MPPImageClassifier alloc] initWithOptions:options error:nil];
    

Transmisión en vivo

@import MediaPipeTasksVision;

// Class that conforms to the `MPPImageClassifierLiveStreamDelegate` protocol
// and implements the method that the image classifier calls once it finishes
// performing classification on each input frame.

@interface APPImageClassifierResultProcessor : NSObject 

@end

@implementation APPImageClassifierResultProcessor

-   (void)imageClassifier:(MPPImageClassifier *)imageClassifier
    didFinishClassificationWithResult:(MPPImageClassifierResult *)imageClassifierResult
              timestampInMilliseconds:(NSInteger)timestampInMilliseconds
                                error:(NSError *)error {

    // Process the image classifier result or errors here.

}

@end

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model"
                                                      ofType:@"tflite"];

MPPImageClassifierOptions *options = [[MPPImageClassifierOptions alloc] init];
options.baseOptions.modelAssetPath = modelPath;
options.runningMode = MPPRunningModeLiveStream;
options.maxResults = 5;

// Assign an object of the class to the `imageClassifierLiveStreamDelegate`
// property.
APPImageClassifierResultProcessor *processor = [APPImageClassifierResultProcessor new];
options.imageClassifierLiveStreamDelegate = processor;

MPPImageClassifier *imageClassifier =
      [[MPPImageClassifier alloc] initWithOptions:options error:nil];
    

Opciones de configuración

Esta tarea tiene las siguientes opciones de configuración para apps para iOS:

Nombre de la opción Descripción Rango de valores Valor predeterminado
runningMode Establece el modo de ejecución de la tarea. Existen tres modos:

IMAGE: Es el modo para entradas de una sola imagen.

VIDEO: Es el modo para los fotogramas decodificados de un video.

LIVE_STREAM: Es el modo de transmisión en vivo de datos de entrada, como los de una cámara. En este modo, se debe llamar a resultListener para configurar un objeto de escucha que reciba resultados de manera asíncrona.
{RunningMode.image, RunningMode.video, RunningMode.liveStream} RunningMode.image
displayNamesLocale Establece el idioma de las etiquetas que se usarán para los nombres visibles proporcionados en los metadatos del modelo de la tarea, si está disponible. El valor predeterminado es en para el inglés. Puedes agregar etiquetas localizadas a los metadatos de un modelo personalizado con la API de Metadata Writer de TensorFlow Lite. Código de configuración regional en
maxResults Establece la cantidad máxima opcional de resultados de clasificación con la puntuación más alta que se mostrarán. Si es menor que 0, se mostrarán todos los resultados disponibles. Cualquier número positivo -1
scoreThreshold Establece el umbral de puntuación de predicción que anula el que se proporciona en los metadatos del modelo (si corresponde). Se rechazarán los resultados por debajo de este valor. Cualquier número de punto flotante Sin establecer
categoryAllowlist Establece la lista opcional de nombres de categorías permitidas. Si no está vacío, se filtrarán los resultados de clasificación cuyo nombre de categoría no esté en este conjunto. Se ignoran los nombres de categorías duplicados o desconocidos. Esta opción es mutuamente excluyente con categoryDenylist y, si se usan ambas, se genera un error. Cualquier cadena Sin establecer
categoryDenylist Establece la lista opcional de nombres de categorías que no están permitidos. Si no está vacío, se filtrarán los resultados de clasificación cuyo nombre de categoría esté en este conjunto. Se ignoran los nombres de categoría duplicados o desconocidos. Esta opción es mutuamente excluyente con categoryAllowlist y usar ambas genera un error. Cualquier cadena Sin establecer
resultListener Establece el objeto de escucha de resultados para que reciba los resultados de la clasificación de forma asíncrona cuando el clasificador de imágenes esté en el modo de transmisión en vivo. Solo se puede usar cuando el modo de ejecución está configurado como LIVE_STREAM. N/A Sin establecer

Configuración de la transmisión en vivo

Cuando el modo de ejecución se configura para transmisión en vivo, el clasificador de imágenes requiere la opción de configuración adicional imageClassifierLiveStreamDelegate, que permite que el clasificador entregue resultados de clasificación de manera asíncrona. El delegado implementa el método imageClassifier(_:didFinishClassification:timestampInMilliseconds:error:), al que llama el clasificador de imágenes después de procesar los resultados de clasificación de cada fotograma.

Nombre de la opción Descripción Rango de valores Valor predeterminado
imageClassifierLiveStreamDelegate Permite que Image Classifier reciba resultados de clasificación de forma asíncrona en el modo de transmisión en vivo. La clase cuya instancia se establece en esta propiedad debe implementar el método imageClassifier(_:didFinishClassification:timestampInMilliseconds:error:). No aplicable Sin establecer

Preparar los datos

Debes convertir la imagen o el fotograma de entrada en un objeto MPImage antes de pasarlo al clasificador de imágenes. MPImage admite diferentes tipos de formatos de imagen de iOS y puede usarlos en cualquier modo de ejecución para la inferencia. Para obtener más información sobre MPImage, consulta la API de MPImage.

Elige un formato de imagen de iOS según tu caso de uso y el modo de ejecución que requiere tu aplicación.MPImage acepta los formatos de imagen de iOS UIImage, CVPixelBuffer y CMSampleBuffer.

UIImage

El formato UIImage es adecuado para los siguientes modos de ejecución:

  • Imágenes: Las imágenes de un paquete de aplicación, una galería de usuario o un sistema de archivos con formato de imagen UIImage se pueden convertir en un objeto MPImage.

  • Videos: Usa AVAssetImageGenerator para extraer fotogramas de video al formato CGImage y, luego, conviértelos en imágenes UIImage.

Swift

// Load an image on the user's device as an iOS `UIImage` object.

// Convert the `UIImage` object to a MediaPipe's Image object having the default
// orientation `UIImage.Orientation.up`.
let image = try MPImage(uiImage: image)
    

Objective-C

// Load an image on the user's device as an iOS `UIImage` object.

// Convert the `UIImage` object to a MediaPipe's Image object having the default
// orientation `UIImageOrientationUp`.
MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
    

En el ejemplo, se inicializa un objeto MPImage con la orientación predeterminada UIImage.Orientation.Up. Puedes inicializar un MPImage con cualquiera de los valores de UIImage.Orientation compatibles. El clasificador de imágenes no admite orientaciones duplicadas, como .upMirrored, .downMirrored, .leftMirrored y .rightMirrored.

Para obtener más información sobre UIImage, consulta la documentación para desarrolladores de Apple sobre UIImage.

CVPixelBuffer

El formato CVPixelBuffer es adecuado para aplicaciones que generan fotogramas y usan el framework CoreImage de iOS para el procesamiento.

El formato CVPixelBuffer es adecuado para los siguientes modos de ejecución:

  • Imágenes: Las apps que generan imágenes CVPixelBuffer después de un procesamiento con el framework CoreImage de iOS se pueden enviar al clasificador de imágenes en el modo de ejecución de imágenes.

  • Videos: Los fotogramas de video se pueden convertir al formato CVPixelBuffer para su procesamiento y, luego, enviarlos al clasificador de imágenes en modo de video.

  • Transmisión en vivo: Es posible que las apps que usan una cámara para iOS para generar fotogramas se conviertan al formato CVPixelBuffer para su procesamiento antes de enviarlas al clasificador de imágenes en modo de transmisión en vivo.

Swift

// Obtain a CVPixelBuffer.

// Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the default
// orientation `UIImage.Orientation.up`.
let image = try MPImage(pixelBuffer: pixelBuffer)
    

Objective-C

// Obtain a CVPixelBuffer.

// Convert the `CVPixelBuffer` object to a MediaPipe's Image object having the
// default orientation `UIImageOrientationUp`.
MPImage *image = [[MPPImage alloc] initWithUIImage:image error:nil];
    

Para obtener más información sobre CVPixelBuffer, consulta la documentación para desarrolladores de Apple de CVPixelBuffer.

CMSampleBuffer

El formato CMSampleBuffer almacena muestras de contenido multimedia de un tipo de contenido multimedia uniforme y es adecuado para el modo de ejecución de transmisiones en vivo. AVCaptureVideoDataOutput de iOS entrega de forma asíncrona los fotogramas en vivo de las cámaras de iOS en el formato CMSampleBuffer.

Swift

// Obtain a CMSampleBuffer.

// Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the default
// orientation `UIImage.Orientation.up`.
let image = try MPImage(sampleBuffer: sampleBuffer)
    

Objective-C

// Obtain a `CMSampleBuffer`.

// Convert the `CMSampleBuffer` object to a MediaPipe's Image object having the
// default orientation `UIImageOrientationUp`.
MPImage *image = [[MPPImage alloc] initWithSampleBuffer:sampleBuffer error:nil];
    

Si quieres obtener más información sobre CMSampleBuffer, consulta la Documentación para desarrolladores de Apple sobre CMSampleBuffer.

Ejecuta la tarea

Para ejecutar el clasificador de imágenes, usa el método classify() específico del modo de ejecución asignado:

  • Imagen fija: classify(image:)
  • Video: classify(videoFrame:timestampInMilliseconds:)
  • transmisión en vivo: classifyAsync(image:timestampInMilliseconds:)

El Clasificador de imágenes muestra las categorías posibles para el objeto dentro de la imagen o el marco de entrada.

En las siguientes muestras de código, se presentan ejemplos básicos de cómo ejecutar el clasificador de imágenes en estos diferentes modos de ejecución:

Swift

Imagen

let result = try imageClassifier.classify(image: image)
    

Video

let result = try imageClassifier.classify(
  videoFrame: image,
  timestampInMilliseconds: timestamp)
    

Transmisión en vivo

try imageClassifier.classifyAsync(
  image: image,
  timestampInMilliseconds: timestamp)
    

Objective-C

Imagen

MPPImageClassifierResult *result = [imageClassifier classifyImage:image
                                                            error:nil];
    

Video

MPPImageClassifierResult *result = [imageClassifier classifyVideoFrame:image
                                               timestampInMilliseconds:timestamp
                                                                 error:nil];
    

Transmisión en vivo

BOOL success = [imageClassifier classifyAsyncImage:image
                          timestampInMilliseconds:timestamp
                                            error:nil];
    

En el ejemplo de código del clasificador de imágenes, se muestran las implementaciones de cada uno de estos modos con más detalle: classify(image:), classify(videoFrame:timestampInMilliseconds:) y classifyAsync(image:timestampInMilliseconds:). El código de ejemplo permite al usuario cambiar entre modos de procesamiento que pueden no ser necesarios para tu caso de uso.

Ten en cuenta lo siguiente:

  • Cuando se ejecuta en modo de video o en modo de transmisión en vivo, también debes proporcionar la marca de tiempo del fotograma de entrada a la tarea del clasificador de imágenes.

  • Cuando se ejecuta en modo de imagen o video, la tarea de Image Classifier bloquea el subproceso actual hasta que termina de procesar la imagen o el fotograma de entrada. Para evitar bloquear el subproceso actual, ejecuta el procesamiento en un subproceso en segundo plano con los frameworks Dispatch o NSOperation de iOS.

  • Cuando se ejecuta en el modo de transmisión en vivo, la tarea del clasificador de imágenes se muestra de inmediato y no bloquea el subproceso actual. Invoca el método imageClassifier(_:didFinishClassification:timestampInMilliseconds:error:) con el resultado de la clasificación después de procesar cada fotograma de entrada. El clasificador de imágenes invoca este método de forma asíncrona en una cola de envío en serie dedicada. Para mostrar los resultados en la interfaz de usuario, envíalos a la cola principal después de procesarlos. Si se llama a la función classifyAsync cuando la tarea del clasificador de imágenes está ocupada procesando otro fotograma, el clasificador de imágenes ignora el nuevo fotograma de entrada.

Cómo controlar y mostrar los resultados

Cuando se ejecuta la inferencia, la tarea Image Classifier muestra un objeto ImageClassifierResult que contiene la lista de categorías posibles para los objetos dentro de la imagen o el fotograma de entrada.

A continuación, se muestra un ejemplo de los datos de salida de esta tarea:

ImageClassifierResult:
 Classifications #0 (single classification head):
  head index: 0
  category #0:
   category name: "/m/01bwb9"
   display name: "Passer domesticus"
   score: 0.91406
   index: 671
  category #1:
   category name: "/m/01bwbt"
   display name: "Passer montanus"
   score: 0.00391
   index: 670

Este resultado se obtuvo ejecutando el Clasificador de aves en lo siguiente:

En el código de ejemplo del clasificador de imágenes, se muestra cómo mostrar los resultados de la clasificación que se devuelven de la tarea. Consulta el ejemplo de código para obtener más información.