งานตัวแยกประเภทรูปภาพ MediaPipe ช่วยให้คุณจัดประเภทรูปภาพได้ คุณสามารถใช้งานนี้เพื่อระบุสิ่งที่รูปภาพแสดงจากชุดหมวดหมู่ที่กําหนดไว้ ณ เวลาฝึก วิธีการเหล่านี้แสดงวิธีใช้โปรแกรมจัดประเภทรูปภาพกับ Python
คุณสามารถดูการทํางานของงานนี้ได้โดยดูเว็บ Demo ดูข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ รูปแบบ และตัวเลือกการกําหนดค่าของงานนี้ได้ที่ภาพรวม
ตัวอย่างโค้ด
โค้ดตัวอย่างสำหรับโปรแกรมจัดประเภทรูปภาพแสดงการใช้งานที่สมบูรณ์ของงานนี้ใน Python เพื่อเป็นข้อมูลอ้างอิง โค้ดนี้จะช่วยคุณทดสอบงานนี้และเริ่มต้นสร้างตัวแยกประเภทรูปภาพของคุณเอง คุณสามารถดู เรียกใช้ และแก้ไขตัวอย่างโค้ดของโปรแกรมจัดประเภทรูปภาพได้โดยใช้เพียงเว็บเบราว์เซอร์
หากคุณกำลังติดตั้งใช้งานโปรแกรมจัดประเภทรูปภาพสำหรับ Raspberry Pi โปรดดูตัวอย่างแอป Raspberry Pi
ตั้งค่า
ส่วนนี้จะอธิบายขั้นตอนสําคัญในการตั้งค่าสภาพแวดล้อมการพัฒนาและโปรเจ็กต์โค้ดเพื่อใช้โปรแกรมจัดประเภทรูปภาพโดยเฉพาะ ดูข้อมูลทั่วไปเกี่ยวกับการตั้งค่าสภาพแวดล้อมการพัฒนาซอฟต์แวร์เพื่อใช้งาน MediaPipe รวมถึงข้อกำหนดเวอร์ชันแพลตฟอร์มได้ที่คู่มือการตั้งค่าสําหรับ Python
แพ็กเกจ
งานตัวแยกประเภทรูปภาพใช้แพ็กเกจ MediaPipe pip คุณติดตั้งข้อกําหนดต่อไปนี้ได้
$ python -m pip install mediapipe
``` ### Imports
Import the following classes to access the Image Classifier task functions:
```python
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
รุ่น
งานตัวจัดประเภทรูปภาพของ MediaPipe ต้องใช้โมเดลที่ผ่านการฝึกซึ่งเข้ากันได้กับงานนี้ ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกแล้วสำหรับโปรแกรมจัดประเภทรูปภาพได้ที่ส่วนโมเดลในภาพรวมของงาน
เลือกและดาวน์โหลดโมเดล แล้วจัดเก็บไว้ในไดเรกทอรีในเครื่อง คุณสามารถใช้รูปแบบ EfficientNet-Lite0 ที่แนะนํา
model_path = '/absolute/path/to/efficientnet_lite0_int8_2.tflite'
ระบุเส้นทางของโมเดลภายในพารามิเตอร์ชื่อโมเดล ดังที่แสดงด้านล่าง
base_options = BaseOptions(model_asset_path=model_path)
สร้างงาน
ใช้ฟังก์ชัน create_from_options
เพื่อสร้างงาน ฟังก์ชัน create_from_options
ยอมรับตัวเลือกการกําหนดค่า ซึ่งรวมถึงโหมดการทํางาน ภาษาของชื่อที่แสดง จํานวนผลลัพธ์สูงสุด เกณฑ์ความเชื่อมั่น รายการที่อนุญาตของหมวดหมู่ และรายการที่ปฏิเสธ ดูข้อมูลเพิ่มเติมเกี่ยวกับตัวเลือกการกำหนดค่าได้ที่ภาพรวมการกําหนดค่า
งานโปรแกรมจัดประเภทรูปภาพรองรับข้อมูลอินพุต 3 ประเภท ได้แก่ ภาพนิ่ง ไฟล์วิดีโอ และวิดีโอสตรีมแบบสด เลือกแท็บที่สอดคล้องกับประเภทข้อมูลอินพุตเพื่อดูวิธีสร้างงานและเรียกใช้การอนุมาน
รูปภาพ
import mediapipe as mp BaseOptions = mp.tasks.BaseOptions ImageClassifier = mp.tasks.vision.ImageClassifier ImageClassifierOptions = mp.tasks.vision.ImageClassifierOptions VisionRunningMode = mp.tasks.vision.RunningMode options = ImageClassifierOptions( base_options=BaseOptions(model_asset_path='/path/to/model.tflite'), max_results=5, running_mode=VisionRunningMode.IMAGE) with ImageClassifier.create_from_options(options) as classifier: # The classifier is initialized. Use it here. # ...
วิดีโอ
import mediapipe as mp BaseOptions = mp.tasks.BaseOptions ImageClassifier = mp.tasks.vision.ImageClassifier ImageClassifierOptions = mp.tasks.vision.ImageClassifierOptions VisionRunningMode = mp.tasks.vision.RunningMode options = ImageClassifierOptions( base_options=BaseOptions(model_asset_path='/path/to/model.tflite'), max_results=5, running_mode=VisionRunningMode.VIDEO) with ImageClassifier.create_from_options(options) as classifier: # The classifier is initialized. Use it here. # ...
ไลฟ์สด
import mediapipe as mp BaseOptions = mp.tasks.BaseOptions ImageClassifierResult = mp.tasks.vision.ImageClassifier.ImageClassifierResult ImageClassifier = mp.tasks.vision.ImageClassifier ImageClassifierOptions = mp.tasks.vision.ImageClassifierOptions VisionRunningMode = mp.tasks.vision.RunningMode def print_result(result: ImageClassifierResult, output_image: mp.Image, timestamp_ms: int): print('ImageClassifierResult result: {}'.format(result)) options = ImageClassifierOptions( base_options=BaseOptions(model_asset_path='/path/to/model.tflite'), running_mode=VisionRunningMode.LIVE_STREAM, max_results=5, result_callback=print_result) with ImageClassifier.create_from_options(options) as classifier: # The classifier is initialized. Use it here. # ...
ดูตัวอย่างการสร้างตัวจัดประเภทรูปภาพเพื่อใช้กับรูปภาพได้ทั้งหมดจากตัวอย่างโค้ด
ตัวเลือกการกำหนดค่า
งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอปพลิเคชัน Python
ชื่อตัวเลือก | คำอธิบาย | ช่วงของค่า | ค่าเริ่มต้น |
---|---|---|---|
running_mode |
ตั้งค่าโหมดการทํางานสําหรับงาน โดยโหมดมี 3 แบบ ดังนี้ รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ LIVE_STREAM: โหมดสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง ในโหมดนี้ คุณต้องเรียกใช้ resultListener เพื่อตั้งค่า Listener เพื่อรับผลลัพธ์แบบไม่พร้อมกัน |
{IMAGE, VIDEO, LIVE_STREAM } |
IMAGE |
display_names_locale |
ตั้งค่าภาษาของป้ายกำกับที่จะใช้สำหรับชื่อที่แสดงซึ่งระบุไว้ในข้อมูลเมตาของโมเดลของงาน (หากมี) ค่าเริ่มต้นคือ en สำหรับภาษาอังกฤษ คุณเพิ่มป้ายกำกับที่แปลแล้วลงในข้อมูลเมตาของโมเดลที่กำหนดเองได้โดยใช้ TensorFlow Lite Metadata Writer API |
รหัสภาษา | en |
max_results |
กําหนดจํานวนสูงสุดของผลการแยกประเภทที่มีคะแนนสูงสุดที่จะแสดง (ไม่บังคับ) หากมีค่าน้อยกว่า 0 ระบบจะแสดงผลลัพธ์ทั้งหมดที่มีอยู่ | ตัวเลขบวกใดก็ได้ | -1 |
score_threshold |
ตั้งค่าเกณฑ์คะแนนการคาดการณ์ที่จะลบล้างเกณฑ์ที่ระบุไว้ในข้อมูลเมตาของโมเดล (หากมี) ระบบจะปฏิเสธผลลัพธ์ที่ต่ำกว่าค่านี้ | ตัวเลขทศนิยม | ไม่ได้ตั้งค่า |
category_allowlist |
ตั้งค่ารายการชื่อหมวดหมู่ที่อนุญาต (ไม่บังคับ) หากไม่ว่าง ระบบจะกรองผลการจัดประเภทที่มีชื่อหมวดหมู่ไม่อยู่ในชุดนี้ออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก
ตัวเลือกนี้ใช้ร่วมกับ category_denylist ไม่ได้ และการใช้ทั้ง 2 ตัวเลือกจะทำให้เกิดข้อผิดพลาด |
สตริงใดก็ได้ | ไม่ได้ตั้งค่า |
category_denylist |
ตั้งค่ารายการชื่อหมวดหมู่ที่ไม่อนุญาต (ไม่บังคับ) หากไม่เป็นค่าว่าง ระบบจะกรองผลการจัดประเภทที่มีชื่อหมวดหมู่อยู่ในชุดนี้ออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้ใช้ร่วมกันกับ category_allowlist ไม่ได้ และการใช้ทั้ง 2 ตัวเลือกจะทำให้เกิดข้อผิดพลาด |
สตริงใดก็ได้ | ไม่ได้ตั้งค่า |
result_callback |
ตั้งค่าโปรแกรมรับฟังผลลัพธ์ให้รับผลการแยกประเภทแบบไม่พร้อมกันเมื่อตัวแยกประเภทรูปภาพอยู่ในโหมดสตรีมแบบสด ใช้ได้เมื่อตั้งค่าโหมดการทํางานเป็น LIVE_STREAM เท่านั้น |
ไม่มี | ไม่ได้ตั้งค่า |
เตรียมข้อมูล
เตรียมอินพุตเป็นไฟล์รูปภาพหรืออาร์เรย์ NumPy จากนั้นแปลงเป็นออบเจ็กต์ mediapipe.Image
หากอินพุตเป็นไฟล์วิดีโอหรือสตรีมแบบสดจากเว็บแคม คุณสามารถใช้ไลบรารีภายนอก เช่น OpenCV เพื่อโหลดเฟรมอินพุตเป็นอาร์เรย์ numpy
ตัวอย่างต่อไปนี้จะอธิบายและแสดงวิธีเตรียมข้อมูลสําหรับการประมวลผลสำหรับข้อมูลแต่ละประเภทที่ใช้ได้
รูปภาพ
import mediapipe as mp # Load the input image from an image file. mp_image = mp.Image.create_from_file('/path/to/image') # Load the input image from a numpy array. mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_image)
วิดีโอ
import mediapipe as mp # Use OpenCV’s VideoCapture to load the input video. # Load the frame rate of the video using OpenCV’s CV_CAP_PROP_FPS # You’ll need it to calculate the timestamp for each frame. # Loop through each frame in the video using VideoCapture#read() # Convert the frame received from OpenCV to a MediaPipe’s Image object. mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
ไลฟ์สด
import mediapipe as mp # Use OpenCV’s VideoCapture to start capturing from the webcam. # Create a loop to read the latest frame from the camera using VideoCapture#read() # Convert the frame received from OpenCV to a MediaPipe’s Image object. mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
เรียกใช้งาน
คุณสามารถเรียกใช้ฟังก์ชันจัดประเภทที่สอดคล้องกับโหมดการทํางานเพื่อเรียกใช้การอนุมาน Image Classifier API จะแสดงหมวดหมู่ที่เป็นไปได้สำหรับวัตถุภายในรูปภาพหรือเฟรมที่ป้อน
รูปภาพ
# Perform image classification on the provided single image. classification_result = classifier.classify(mp_image)
วิดีโอ
# Calculate the timestamp of the current frame frame_timestamp_ms = 1000 * frame_index / video_file_fps # Perform image classification on the video frame. classification_result = classifier.classify_for_video(mp_image, frame_timestamp_ms)
ไลฟ์สด
# Send the latest frame to perform image classification. # Results are sent to the `result_callback` provided in the `ImageClassifierOptions`. classifier.classify_async(mp_image, frame_timestamp_ms)
โปรดทราบดังต่อไปนี้
- เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด คุณต้องระบุการประทับเวลาของเฟรมอินพุตให้กับงานโปรแกรมแยกประเภทรูปภาพด้วย
- เมื่อทํางานในโมเดลรูปภาพหรือวิดีโอ งานตัวจัดประเภทรูปภาพจะบล็อกเธรดปัจจุบันจนกว่าจะประมวลผลรูปภาพหรือเฟรมอินพุตเสร็จ
- เมื่อทำงานในโหมดสตรีมแบบสด งานตัวจัดประเภทรูปภาพจะไม่บล็อกเธรดปัจจุบัน แต่จะแสดงผลทันที โดยจะเรียกใช้โปรแกรมรับฟังผลลัพธ์พร้อมผลการจัดประเภททุกครั้งที่ประมวลผลเฟรมอินพุตเสร็จแล้ว หากมีการเรียกใช้ฟังก์ชัน
classifyAsync
เมื่องานโปรแกรมจัดประเภทรูปภาพกำลังประมวลผลเฟรมอื่นอยู่ งานจะละเว้นเฟรมอินพุตใหม่
ดูตัวอย่างการสร้างตัวจัดประเภทรูปภาพเพื่อใช้กับรูปภาพได้ทั้งหมดจากตัวอย่างโค้ด
จัดการและแสดงผลลัพธ์
เมื่อทำการอนุมาน งานจัดประเภทรูปภาพจะแสดงผลImageClassifierResult
ออบเจ็กต์ซึ่งมีรายการหมวดหมู่ที่เป็นไปได้สำหรับออบเจ็กต์ภายในรูปภาพหรือเฟรมที่ป้อน
ต่อไปนี้เป็นตัวอย่างข้อมูลเอาต์พุตจากงานนี้
ImageClassifierResult:
Classifications #0 (single classification head):
head index: 0
category #0:
category name: "/m/01bwb9"
display name: "Passer domesticus"
score: 0.91406
index: 671
category #1:
category name: "/m/01bwbt"
display name: "Passer montanus"
score: 0.00391
index: 670
ผลลัพธ์นี้ได้มาจากการเรียกใช้ตัวจัดประเภทนกใน
โค้ดตัวอย่างตัวแยกประเภทรูปภาพแสดงวิธีแสดงผลการแยกประเภทที่แสดงผลจากงาน ดูรายละเอียดได้ในตัวอย่างโค้ด