คำแนะนำในการตรวจหาจุดสังเกตสำหรับ Python

งานจุดสังเกตท่าทางของ MediaPipe ช่วยให้คุณตรวจหาจุดสังเกตของร่างกายมนุษย์ในรูปภาพหรือวิดีโอได้ คุณสามารถใช้งานนี้เพื่อระบุตำแหน่งสำคัญของร่างกาย วิเคราะห์ท่าทาง และจัดหมวดหมู่การเคลื่อนไหว งานนี้ใช้โมเดลแมชชีนเลิร์นนิง (ML) ที่ทำงานกับรูปภาพหรือวิดีโอรายการเดียว งานนี้จะแสดงผลจุดสังเกตของท่าทางร่างกายในพิกัดรูปภาพและพิกัดโลก 3 มิติ

ตัวอย่างโค้ดที่อธิบายในวิธีการเหล่านี้มีอยู่ใน GitHub ดูข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ รูปแบบ และตัวเลือกการกําหนดค่าของงานนี้ได้ที่ภาพรวม

ตัวอย่างโค้ด

โค้ดตัวอย่างสำหรับ Pose Landmarker แสดงการใช้งานที่สมบูรณ์ของงานนี้ใน Python เพื่อเป็นข้อมูลอ้างอิง โค้ดนี้จะช่วยคุณทดสอบงานนี้และเริ่มต้นสร้างจุดสังเกตท่าทางของคุณเอง คุณสามารถดู เรียกใช้ และแก้ไขโค้ดตัวอย่างของ Pose Landmarker ได้โดยใช้เพียงเว็บเบราว์เซอร์

หากใช้เครื่องระบุจุดสังเกตของท่าทางสำหรับ Raspberry Pi โปรดดูตัวอย่างแอปของ Raspberry Pi

ตั้งค่า

ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมการพัฒนาและเขียนโค้ดโปรเจ็กต์เพื่อใช้ Pose Landmarker โดยเฉพาะ ดูข้อมูลทั่วไปเกี่ยวกับการตั้งค่าสภาพแวดล้อมการพัฒนาซอฟต์แวร์เพื่อใช้งาน MediaPipe รวมถึงข้อกำหนดเวอร์ชันแพลตฟอร์มได้ที่คู่มือการตั้งค่าสำหรับ Python

แพ็กเกจ

งานเครื่องหมายตำแหน่งของท่าทาง MediaPipe ต้องใช้แพ็กเกจ mediapipe PyPI คุณสามารถติดตั้งและนําเข้าข้อมูลต่อไปนี้ได้

$ python -m pip install mediapipe

การนำเข้า

นําเข้าคลาสต่อไปนี้เพื่อเข้าถึงฟังก์ชันงานของ Pose Landmarker

import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision

รุ่น

ภารกิจของ MediaPipe Pose Landmarker ต้องใช้โมเดลที่ผ่านการฝึกอบรมซึ่งเข้ากันได้กับภารกิจนี้ ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกอบรมแล้วสำหรับเครื่องระบุจุดสังเกตของท่าทางได้ที่ส่วนโมเดลในภาพรวมของงาน

เลือกและดาวน์โหลดโมเดล แล้วจัดเก็บไว้ในไดเรกทอรีในเครื่อง

model_path = '/absolute/path/to/pose_landmarker.task'

ใช้พารามิเตอร์BaseOptionsออบเจ็กต์ model_asset_path เพื่อระบุเส้นทางของโมเดลที่จะใช้ ดูตัวอย่างโค้ดได้ที่ส่วนถัดไป

สร้างงาน

งานเครื่องหมายตำแหน่งของท่าทาง MediaPipe ใช้ฟังก์ชัน create_from_options เพื่อตั้งค่างาน ฟังก์ชัน create_from_options ยอมรับค่าสำหรับตัวเลือกการกําหนดค่าที่จะจัดการ ดูข้อมูลเพิ่มเติมได้ที่ตัวเลือกการกําหนดค่า

โค้ดต่อไปนี้แสดงวิธีสร้างและกําหนดค่างานนี้

ตัวอย่างเหล่านี้ยังแสดงรูปแบบต่างๆ ของการสร้างงานสำหรับรูปภาพ ไฟล์วิดีโอ และไลฟ์สตรีมด้วย

รูปภาพ

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
PoseLandmarker = mp.tasks.vision.PoseLandmarker
PoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode

options = PoseLandmarkerOptions(
    base_options=BaseOptions(model_asset_path=model_path),
    running_mode=VisionRunningMode.IMAGE)

with PoseLandmarker.create_from_options(options) as landmarker:
  # The landmarker is initialized. Use it here.
  # ...
    

วิดีโอ

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
PoseLandmarker = mp.tasks.vision.PoseLandmarker
PoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode

# Create a pose landmarker instance with the video mode:
options = PoseLandmarkerOptions(
    base_options=BaseOptions(model_asset_path=model_path),
    running_mode=VisionRunningMode.VIDEO)

with PoseLandmarker.create_from_options(options) as landmarker:
  # The landmarker is initialized. Use it here.
  # ...
    

ไลฟ์สด

import mediapipe as mp

BaseOptions = mp.tasks.BaseOptions
PoseLandmarker = mp.tasks.vision.PoseLandmarker
PoseLandmarkerOptions = mp.tasks.vision.PoseLandmarkerOptions
PoseLandmarkerResult = mp.tasks.vision.PoseLandmarkerResult
VisionRunningMode = mp.tasks.vision.RunningMode

# Create a pose landmarker instance with the live stream mode:
def print_result(result: PoseLandmarkerResult, output_image: mp.Image, timestamp_ms: int):
    print('pose landmarker result: {}'.format(result))

options = PoseLandmarkerOptions(
    base_options=BaseOptions(model_asset_path=model_path),
    running_mode=VisionRunningMode.LIVE_STREAM,
    result_callback=print_result)

with PoseLandmarker.create_from_options(options) as landmarker:
  # The landmarker is initialized. Use it here.
  # ...
    

ดูตัวอย่างการสร้างจุดสังเกตท่าทางเพื่อใช้กับรูปภาพได้ที่ตัวอย่างโค้ด

ตัวเลือกการกำหนดค่า

งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอปพลิเคชัน Python

ชื่อตัวเลือก คำอธิบาย ช่วงของค่า ค่าเริ่มต้น
running_mode ตั้งค่าโหมดการทํางานสําหรับงาน โดยโหมดมี 3 แบบ ดังนี้

รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว

วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ

LIVE_STREAM: โหมดสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง ในโหมดนี้ คุณต้องเรียกใช้ resultListener เพื่อตั้งค่า Listener เพื่อรับผลลัพธ์แบบไม่พร้อมกัน
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
num_poses จำนวนท่าทางสูงสุดที่ตัวระบุจุดสังเกตของท่าทางสามารถตรวจจับได้ Integer > 0 1
min_pose_detection_confidence คะแนนความเชื่อมั่นขั้นต่ำที่การตรวจจับท่าทางจะถือว่าสำเร็จ Float [0.0,1.0] 0.5
min_pose_presence_confidence คะแนนความเชื่อมั่นขั้นต่ำของคะแนนการมีอยู่ของท่าทางในการตรวจหาจุดสังเกตของท่าทาง Float [0.0,1.0] 0.5
min_tracking_confidence คะแนนความเชื่อมั่นขั้นต่ำสำหรับการติดตามท่าทางที่ถือว่าสำเร็จ Float [0.0,1.0] 0.5
output_segmentation_masks ฟีเจอร์จุดสังเกตของท่าทางจะแสดงผลหน้ากากการแบ่งกลุ่มสำหรับท่าทางที่ตรวจพบหรือไม่ Boolean False
result_callback ตั้งค่าตัวรับผลลัพธ์ให้รับผลลัพธ์ของจุดสังเกตแบบไม่พร้อมกันเมื่อจุดสังเกตท่าทางอยู่ในโหมดสตรีมแบบสด ใช้ได้เมื่อตั้งค่าโหมดการทํางานเป็น LIVE_STREAM เท่านั้น ResultListener N/A

เตรียมข้อมูล

เตรียมอินพุตเป็นไฟล์รูปภาพหรืออาร์เรย์ NumPy จากนั้นแปลงเป็นออบเจ็กต์ mediapipe.Image หากอินพุตเป็นไฟล์วิดีโอหรือสตรีมแบบสดจากเว็บแคม คุณสามารถใช้ไลบรารีภายนอก เช่น OpenCV เพื่อโหลดเฟรมอินพุตเป็นอาร์เรย์ numpy

รูปภาพ

import mediapipe as mp

# Load the input image from an image file.
mp_image = mp.Image.create_from_file('/path/to/image')

# Load the input image from a numpy array.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_image)
    

วิดีโอ

import mediapipe as mp

# Use OpenCV’s VideoCapture to load the input video.

# Load the frame rate of the video using OpenCV’s CV_CAP_PROP_FPS
# You’ll need it to calculate the timestamp for each frame.

# Loop through each frame in the video using VideoCapture#read()

# Convert the frame received from OpenCV to a MediaPipe’s Image object.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
    

ไลฟ์สด

import mediapipe as mp

# Use OpenCV’s VideoCapture to start capturing from the webcam.

# Create a loop to read the latest frame from the camera using VideoCapture#read()

# Convert the frame received from OpenCV to a MediaPipe’s Image object.
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=numpy_frame_from_opencv)
    

เรียกใช้งาน

โปรแกรมระบุจุดสังเกตของท่าทางใช้ฟังก์ชัน detect, detect_for_video และ detect_asyncเพื่อทริกเกอร์การอนุมาน สำหรับจุดสังเกตของท่าทาง ขั้นตอนนี้เกี่ยวข้องกับการประมวลผลข้อมูลอินพุตล่วงหน้าและการตรวจหาท่าทางในรูปภาพ

โค้ดต่อไปนี้แสดงวิธีดำเนินการประมวลผลด้วยโมเดลงาน

รูปภาพ

# Perform pose landmarking on the provided single image.
# The pose landmarker must be created with the image mode.
pose_landmarker_result = landmarker.detect(mp_image)
    

วิดีโอ

# Perform pose landmarking on the provided single image.
# The pose landmarker must be created with the video mode.
pose_landmarker_result = landmarker.detect_for_video(mp_image, frame_timestamp_ms)
    

ไลฟ์สด

# Send live image data to perform pose landmarking.
# The results are accessible via the `result_callback` provided in
# the `PoseLandmarkerOptions` object.
# The pose landmarker must be created with the live stream mode.
landmarker.detect_async(mp_image, frame_timestamp_ms)
    

โปรดทราบดังต่อไปนี้

  • เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด ให้ระบุการประทับเวลาของเฟรมอินพุตให้กับงานตัวระบุจุดสังเกตของท่าทางด้วย
  • เมื่อทำงานในโมเดลรูปภาพหรือวิดีโอ งานตัวระบุจุดสังเกตของท่าทางจะบล็อกเธรดปัจจุบันจนกว่าจะประมวลผลรูปภาพหรือเฟรมอินพุตเสร็จ
  • เมื่อทำงานในโหมดสตรีมแบบสด งานตัวระบุจุดสังเกตของท่าทางจะแสดงผลทันทีและไม่บล็อกเธรดปัจจุบัน โดยจะเรียกใช้โปรแกรมรับฟังผลลัพธ์พร้อมผลการตรวจจับทุกครั้งที่ประมวลผลเฟรมอินพุตเสร็จสิ้น หากมีการเรียกใช้ฟังก์ชันการตรวจจับเมื่องานเครื่องหมายจุดสังเกตของท่าทางจดจ่ออยู่กับการประมวลผลเฟรมอื่น งานจะละเว้นเฟรมอินพุตใหม่

ดูตัวอย่างที่สมบูรณ์ของการใช้ Pose Landmarker ในรูปภาพได้ที่รายละเอียดในตัวอย่างโค้ด

จัดการและแสดงผลลัพธ์

โปรแกรมระบุจุดสังเกตของท่าทางจะแสดงผลออบเจ็กต์ poseLandmarkerResult สำหรับการเรียกใช้การตรวจจับแต่ละครั้ง ออบเจ็กต์ผลลัพธ์จะมีพิกัดของจุดสังเกตท่าทางแต่ละจุด

ต่อไปนี้เป็นตัวอย่างข้อมูลเอาต์พุตจากงานนี้

PoseLandmarkerResult:
  Landmarks:
    Landmark #0:
      x            : 0.638852
      y            : 0.671197
      z            : 0.129959
      visibility   : 0.9999997615814209
      presence     : 0.9999984502792358
    Landmark #1:
      x            : 0.634599
      y            : 0.536441
      z            : -0.06984
      visibility   : 0.999909
      presence     : 0.999958
    ... (33 landmarks per pose)
  WorldLandmarks:
    Landmark #0:
      x            : 0.067485
      y            : 0.031084
      z            : 0.055223
      visibility   : 0.9999997615814209
      presence     : 0.9999984502792358
    Landmark #1:
      x            : 0.063209
      y            : -0.00382
      z            : 0.020920
      visibility   : 0.999976
      presence     : 0.999998
    ... (33 world landmarks per pose)
  SegmentationMasks:
    ... (pictured below)

เอาต์พุตมีทั้งพิกัดที่ปรับมาตรฐาน (Landmarks) และพิกัดโลก (WorldLandmarks) ของจุดสังเกตแต่ละจุด

เอาต์พุตจะมีพิกัดที่แปลงค่าให้เป็นมาตรฐาน (Landmarks) ดังต่อไปนี้

  • x และ y: พิกัดจุดสังเกตที่ปรับให้เป็นมาตรฐานระหว่าง 0.0 ถึง 1.0 ตามความกว้าง (x) และความสูง (y) ของรูปภาพ

  • z: ความลึกของจุดสังเกต โดยกำหนดจุดเริ่มต้นที่ความลึกตรงกลางสะโพก ยิ่งค่านี้น้อย สถานที่สำคัญก็ยิ่งอยู่ใกล้กับกล้อง ระดับของ z ใช้มาตราส่วนเดียวกับ x โดยประมาณ

  • visibility: ความเป็นไปได้ที่จุดสังเกตจะปรากฏในรูปภาพ

เอาต์พุตประกอบด้วยพิกัดโลก (WorldLandmarks) ต่อไปนี้

  • x, y และ z: พิกัด 3 มิติในชีวิตจริงเป็นเมตร โดยจุดกึ่งกลางของสะโพกเป็นจุดเริ่มต้น

  • visibility: ความเป็นไปได้ที่จุดสังเกตจะปรากฏในรูปภาพ

รูปภาพต่อไปนี้แสดงภาพเอาต์พุตของงาน

ผู้หญิงกำลังทำท่านั่งสมาธิ ท่าทางของเธอได้รับการไฮไลต์ด้วยโครงร่างที่ระบุตำแหน่งของแขนและลำตัว

หน้ากากการแบ่งกลุ่ม (ไม่บังคับ) แสดงถึงความเป็นไปได้ที่แต่ละพิกเซลเป็นของบุคคลที่ตรวจพบ รูปภาพต่อไปนี้คือมาสก์การแบ่งกลุ่มของเอาต์พุตของงาน

มาสก์การแบ่งส่วนของรูปภาพก่อนหน้าที่แสดงรูปร่างของผู้หญิง

โค้ดตัวอย่างของ Pose Landmarker แสดงวิธีแสดงผลลัพธ์ที่แสดงผลจากงาน ดูรายละเอียดได้ในตัวอย่างโค้ด