The Gemini API supports PDF input, including long documents (up to 3600 pages). Gemini models process PDFs with native vision, and are therefore able to understand both text and image contents inside documents. With native PDF vision support, Gemini models are able to:
- Analyze diagrams, charts, and tables inside documents.
- Extract information into structured output formats.
- Answer questions about visual and text contents in documents.
- Summarize documents.
- Transcribe document content (e.g. to HTML) preserving layouts and formatting, for use in downstream applications (such as in RAG pipelines).
This tutorial demonstrates some possible ways to use the Gemini API with PDF documents. All output is text-only.
Before you begin: Set up your project and API key
Before calling the Gemini API, you need to set up your project and configure your API key.
Get and secure your API key
You need an API key to call the Gemini API. If you don't already have one, create a key in Google AI Studio.
It's strongly recommended that you do not check an API key into your version control system.
This tutorial assumes that you're accessing your API key as an environment variable.
Prompting with PDFs
This guide demonstrates how to upload and process PDFs using the File API or by including them as inline data.
Technical details
Gemini 1.5 Pro and 1.5 Flash support a maximum of 3,600 document pages. Document pages must be in one of the following text data MIME types:
- PDF -
application/pdf
- JavaScript -
application/x-javascript
,text/javascript
- Python -
application/x-python
,text/x-python
- TXT -
text/plain
- HTML -
text/html
- CSS -
text/css
- Markdown -
text/md
- CSV -
text/csv
- XML -
text/xml
- RTF -
text/rtf
Each document page is equivalent to 258 tokens.
While there are no specific limits to the number of pixels in a document besides the model's context window, larger pages are scaled down to a maximum resolution of 3072x3072 while preserving their original aspect ratio, while smaller pages are scaled up to 768x768 pixels. There is no cost reduction for pages at lower sizes, other than bandwidth, or performance improvement for pages at higher resolution.
For best results:
- Rotate pages to the correct orientation before uploading.
- Avoid blurry pages.
- If using a single page, place the text prompt after the page.
PDF input
For PDF payloads under 20MB, you can choose between uploading base64 encoded documents or directly uploading locally stored files.
As inline_data
You can process PDF documents directly from URLs. Here's a code snippet showing how to do this:
DOC_URL="https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf"
PROMPT="Summarize this document"
DISPLAY_NAME="base64_pdf"
# Download the PDF
wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}"
# Check for FreeBSD base64 and set flags accordingly
if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi
# Base64 encode the PDF
ENCODED_PDF=$(base64 $B64FLAGS "${DISPLAY_NAME}.pdf")
# Generate content using the base64 encoded PDF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"inline_data": {"mime_type": "application/pdf", "data": "'"$ENCODED_PDF"'"}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
Large PDFs
You can use the File API to upload a document of any size. Always use the File API when the total request size (including the files, text prompt, system instructions, etc.) is larger than 20 MB.
Call media.upload
to upload a file using the
File API. The following code uploads a document file and then uses the file in a
call to
models.generateContent
.
Large PDFs from URLs
Use the File API for large PDF files available from URLs, simplifying the process of uploading and processing these documents directly through their URLs:
PDF_PATH="https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
DISPLAY_NAME="A17_FlightPlan"
PROMPT="Summarize this document"
# Download the PDF from the provided URL
wget -O "${DISPLAY_NAME}.pdf" "${PDF_PATH}"
MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf")
NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo "file_uri: ${file_uri}"
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "'$PROMPT'"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
Large PDFs stored locally
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: application/pdf" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Can you add a few more lines to this poem?"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
You can verify the API successfully stored the uploaded file and get its
metadata by calling files.get
. Only the name
(and by extension, the uri
) are unique.
name=$(jq ".file.name" file_info.json)
# Get the file of interest to check state
curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
# Print some information about the file you got
name=$(jq ".file.name" file_info.json)
echo name=$name
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
Multiple PDFs
The Gemini API is capable of processing multiple PDF documents in a single request, as long as the combined size of the documents and the text prompt stays within the model's context window.
DOC_URL_1="https://arxiv.org/pdf/2312.11805"
DOC_URL_2="https://arxiv.org/pdf/2403.05530"
DISPLAY_NAME_1="Gemini_paper"
DISPLAY_NAME_2="Gemini_1.5_paper"
PROMPT="What is the difference between each of the main benchmarks between these two papers? Output these in a table."
# Function to download and upload a PDF
upload_pdf() {
local doc_url="$1"
local display_name="$2"
# Download the PDF
wget -O "${display_name}.pdf" "${doc_url}"
local MIME_TYPE=$(file -b --mime-type "${display_name}.pdf")
local NUM_BYTES=$(wc -c < "${display_name}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
local tmp_header_file=upload-header.tmp
# Initial resumable request
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D "${tmp_header_file}" \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${display_name}'}}" 2> /dev/null
local upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the PDF
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${display_name}.pdf" 2> /dev/null > "file_info_${display_name}.json"
local file_uri=$(jq ".file.uri" "file_info_${display_name}.json")
echo "file_uri for ${display_name}: ${file_uri}"
# Clean up the downloaded PDF
rm "${display_name}.pdf"
echo "${file_uri}"
}
# Upload the first PDF
file_uri_1=$(upload_pdf "${DOC_URL_1}" "${DISPLAY_NAME_1}")
# Upload the second PDF
file_uri_2=$(upload_pdf "${DOC_URL_2}" "${DISPLAY_NAME_2}")
# Now generate content using both files
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_1'}},
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_2'}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
List files
You can list all files uploaded using the File API and their URIs using
files.list
.
echo "My files: "
curl "https://generativelanguage.googleapis.com/v1beta/files?key=$GOOGLE_API_KEY"
Delete files
Files uploaded using the File API are automatically deleted after 2 days. You
can also manually delete them using
files.delete
.
curl --request "DELETE" https://generativelanguage.googleapis.com/v1beta/files/$name?key=$GOOGLE_API_KEY
Context caching with PDFs
DOC_URL="https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
DISPLAY_NAME="A17_FlightPlan"
SYSTEM_INSTRUCTION="You are an expert at analyzing transcripts."
PROMPT="Please summarize this transcript"
MODEL="models/gemini-1.5-flash-002" # Make sure this model supports caching
TTL="300s" # Or your preferred TTL
# Download the PDF
wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}"
MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf")
NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo "file_uri: ${file_uri}"
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
# Create the cached content request
echo '{
"model": "'$MODEL'",
"contents":[
{
"parts":[
{"file_data": {"mime_type": "'$MIME_TYPE'", "file_uri": '$file_uri'}}
],
"role": "user"
}
],
"system_instruction": {
"parts": [
{
"text": "'$SYSTEM_INSTRUCTION'"
}
],
"role": "system"
},
"ttl": "'$TTL'"
}' > request.json
# Send the cached content request
curl -X POST "${BASE_URL}/v1beta/cachedContents?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d @request.json \
> cache.json
CACHE_NAME=$(cat cache.json | grep '"name":' | cut -d '"' -f 4 | head -n 1)
echo "CACHE_NAME: ${CACHE_NAME}"
# Send the generateContent request using the cached content
curl -X POST "${BASE_URL}/${MODEL}:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"contents": [
{
"parts":[{
"text": "'$PROMPT'"
}],
"role": "user"
}
],
"cachedContent": "'$CACHE_NAME'"
}' > response.json
cat response.json
echo jq ".candidates[].content.parts[].text" response.json
List caches
It's not possible to retrieve or view cached content, but you can retrieve
cache metadata (name
, model
, display_name
, usage_metadata
,
create_time
, update_time
, and expire_time
).
To list metadata for all uploaded caches, use CachedContent.list()
:
curl "https://generativelanguage.googleapis.com/v1beta/cachedContents?key=$GOOGLE_API_KEY"
Update a cache
You can set a new ttl
or expire_time
for a cache. Changing anything else
about the cache isn't supported.
curl -X PATCH "https://generativelanguage.googleapis.com/v1beta/$CACHE_NAME?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{"ttl": "600s"}'
Delete a cache
The caching service provides a delete operation for manually removing content from the cache.
curl -X DELETE "https://generativelanguage.googleapis.com/v1beta/$CACHE_NAME?key=$GOOGLE_API_KEY"
What's next
This guide shows how to use
generateContent
and
to generate text outputs from processed documents. To learn more,
see the following resources:
- File prompting strategies: The Gemini API supports prompting with text, image, audio, and video data, also known as multimodal prompting.
- System instructions: System instructions let you steer the behavior of the model based on your specific needs and use cases.
- Safety guidance: Sometimes generative AI models produce unexpected outputs, such as outputs that are inaccurate, biased, or offensive. Post-processing and human evaluation are essential to limit the risk of harm from such outputs.