Anleitung für Funktionsaufrufe

Mit Funktionsaufrufen können Sie einfacher strukturierte Datenausgaben aus generativen Modellen erhalten. Sie können diese Ausgaben dann verwenden, um andere APIs aufzurufen und die relevanten Antwortdaten an das Modell zurückzugeben. Mithilfe von Funktionsaufrufen können Sie also generative Modelle mit externen Systemen verbinden, damit die generierten Inhalte die neuesten und genauesten Informationen enthalten.

Sie können Gemini-Modellen Funktionsbeschreibungen zur Verfügung stellen. Das sind Funktionen, die Sie in der Sprache Ihrer App schreiben (d. h. keine Google Cloud Functions). Das Modell fordert Sie möglicherweise auf, eine Funktion aufzurufen und das Ergebnis zurückzugeben, damit das Modell Ihre Anfrage verarbeiten kann.

Weitere Informationen finden Sie unter Einführung in Funktionsaufrufe.

Beispiel-API für die Beleuchtungssteuerung

Angenommen, Sie haben ein einfaches Beleuchtungssystem mit einer API (Application Programming Interface) und möchten Nutzern ermöglichen, die Beleuchtung über einfache Textanfragen zu steuern. Mit der Funktion „Funktionsaufruf“ können Sie Anfragen von Nutzern zur Beleuchtungsänderung interpretieren und in API-Aufrufe umwandeln, um die Beleuchtungswerte festzulegen. Mit diesem hypothetischen Beleuchtungssystem können Sie die Helligkeit des Lichts und seine Farbtemperatur steuern, die als zwei separate Parameter definiert sind:

Parameter Typ Erforderlich Beschreibung
brightness Zahl Ja Helligkeit von 0 bis 100 „0“ steht für „Aus“ und „100“ für die volle Helligkeit.
colorTemperature String Ja Farbtemperatur der Leuchte, kann daylight, cool oder warm sein.

Der Einfachheit halber hat dieses imaginäre Beleuchtungssystem nur eine Lampe, sodass der Nutzer keinen Raum oder Standort angeben muss. Hier ist eine Beispiel-JSON-Anfrage, die Sie an die API zur Beleuchtungssteuerung senden könnten, um die Beleuchtungsstärke mit der Tageslicht-Farbtemperatur auf 50 % zu ändern:

{
  "brightness": "50",
  "colorTemperature": "daylight"
}

In dieser Anleitung zeigen wir Ihnen, wie Sie einen Funktionsaufruf für die Gemini API einrichten, um die Beleuchtungsanfragen von Nutzern zu interpretieren und ihnen API-Einstellungen zuzuordnen, um die Helligkeit und Farbtemperatur eines Leuchtmittels zu steuern.

Bevor Sie beginnen: Projekt und API-Schlüssel einrichten

Bevor Sie die Gemini API aufrufen können, müssen Sie Ihr Projekt einrichten und Ihren API-Schlüssel konfigurieren.

API-Funktion definieren

Erstellen Sie eine Funktion, die eine API-Anfrage stellt. Diese Funktion sollte im Code Ihrer Anwendung definiert werden, kann aber Dienste oder APIs außerhalb Ihrer Anwendung aufrufen. Die Gemini API ruft diese Funktion nicht direkt auf. Sie können also über Ihren Anwendungscode steuern, wie und wann diese Funktion ausgeführt wird. Zu Demonstrationszwecken wird in dieser Anleitung eine Mock-API-Funktion definiert, die nur die angeforderten Beleuchtungswerte zurückgibt:

async function setLightValues(brightness, colorTemp) {
  // This mock API returns the requested lighting values
  return {
    brightness: brightness,
    colorTemperature: colorTemp
  };
}

Funktionsdeklarationen erstellen

Erstellen Sie die Funktionsdeklaration, die Sie an das generative Modell übergeben. Wenn Sie eine Funktion für die Verwendung durch das Modell deklarieren, sollten Sie in den Funktions- und Parameterbeschreibungen so viele Details wie möglich angeben. Anhand dieser Informationen bestimmt das generative Modell, welche Funktion ausgewählt werden soll und wie Werte für die Parameter im Funktionsaufruf angegeben werden. Im folgenden Code wird gezeigt, wie die Funktion zur Beleuchtungssteuerung deklariert wird:

// Function declaration, to pass to the model.
const controlLightFunctionDeclaration = {
  name: "controlLight",
  parameters: {
    type: "OBJECT",
    description: "Set the brightness and color temperature of a room light.",
    properties: {
      brightness: {
        type: "NUMBER",
        description: "Light level from 0 to 100. Zero is off and 100 is full brightness.",
      },
      colorTemperature: {
        type: "STRING",
        description: "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
      },
    },
    required: ["brightness", "colorTemperature"],
  },
};

// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
  controlLight: ({ brightness, colorTemp }) => {
    return setLightValues( brightness, colorTemp)
  }
};

Funktionen während der Modellinitialisierung deklarieren

Wenn Sie Funktionsaufrufe mit einem Modell verwenden möchten, müssen Sie Ihre Funktionsdeklarationen angeben, wenn Sie das Modellobjekt initialisieren. Funktionen werden deklariert, indem Sie den Parameter tools des Modells festlegen:

<html>
  <body>
    <!-- ... Your HTML and CSS -->

    <script type="importmap">
      {
        "imports": {
          "@google/generative-ai": "https://esm.run/@google/generative-ai"
        }
      }
    </script>
    <script type="module">
      import { GoogleGenerativeAI } from "@google/generative-ai";

      // Fetch your API_KEY
      const API_KEY = "...";

      // Access your API key (see "Set up your API key" above)
      const genAI = new GoogleGenerativeAI(API_KEY);

      // ...

      const generativeModel = genAI.getGenerativeModel({
        // Use a model that supports function calling, like a Gemini 1.5 model
        model: "gemini-1.5-flash",

        // Specify the function declaration.
        tools: {
          functionDeclarations: [controlLightFunctionDeclaration],
        },
      });
    </script>
  </body>
</html>

Funktionsaufruf generieren

Nachdem Sie das Modell mit Ihren Funktionsdeklarationen initialisiert haben, können Sie es mit der definierten Funktion auffordern. Sie sollten Funktionsaufrufe mit Chat-Prompts (sendMessage()) verwenden, da Funktionsaufrufe im Allgemeinen vom Kontext früherer Prompts und Antworten profitieren.

const chat = generativeModel.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";

// Send the message to the model.
const result = await chat.sendMessage(prompt);

// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];

if (call) {
  // Call the executable function named in the function call
  // with the arguments specified in the function call and
  // let it call the hypothetical API.
  const apiResponse = await functions[call.name](call.args);

  // Send the API response back to the model so it can generate
  // a text response that can be displayed to the user.
  const result = await chat.sendMessage([{functionResponse: {
    name: 'controlLight',
    response: apiResponse
  }}]);

  // Log the text response.
  console.log(result.response.text());
}