Interpretacja obrazu

Modele Gemini są od podstaw tworzone z myślą o multimodalności, co umożliwia wykonywanie wielu zadań związanych z przetwarzaniem obrazów i widzeniem komputerowym, w tym tworzenie podpisów do obrazów, klasyfikowanie obrazów i odpowiadanie na pytania dotyczące obrazów, bez konieczności trenowania specjalistycznych modeli uczenia maszynowego.

Oprócz ogólnych możliwości multimodalnych modele Gemini oferują większą dokładność w przypadku konkretnych zastosowań, takich jak wykrywanie obiektówsegmentacja, dzięki dodatkowemu trenowaniu.

Przekazywanie obrazów do Gemini

Obrazy możesz przekazywać do Gemini na 2 sposoby:

Przekazywanie danych obrazu w tekście

Możesz przekazywać dane obrazu w treści żądania do generateContent. Dane obrazu możesz podać jako ciągi tekstowe z kodowaniem Base64 lub wczytując bezpośrednio pliki lokalne (w zależności od języka).

Poniższy przykład pokazuje, jak odczytać obraz z pliku lokalnego i przekazać go do interfejsu generateContent API w celu przetworzenia.

Python

  from google import genai
  from google.genai import types

  with open('path/to/small-sample.jpg', 'rb') as f:
      image_bytes = f.read()

  client = genai.Client()
  response = client.models.generate_content(
    model='gemini-3-flash-preview',
    contents=[
      types.Part.from_bytes(
        data=image_bytes,
        mime_type='image/jpeg',
      ),
      'Caption this image.'
    ]
  )

  print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";

const ai = new GoogleGenAI({});
const base64ImageFile = fs.readFileSync("path/to/small-sample.jpg", {
  encoding: "base64",
});

const contents = [
  {
    inlineData: {
      mimeType: "image/jpeg",
      data: base64ImageFile,
    },
  },
  { text: "Caption this image." },
];

const response = await ai.models.generateContent({
  model: "gemini-3-flash-preview",
  contents: contents,
});
console.log(response.text);

Go

bytes, _ := os.ReadFile("path/to/small-sample.jpg")

parts := []*genai.Part{
  genai.NewPartFromBytes(bytes, "image/jpeg"),
  genai.NewPartFromText("Caption this image."),
}

contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

result, _ := client.Models.GenerateContent(
  ctx,
  "gemini-3-flash-preview",
  contents,
  nil,
)

fmt.Println(result.Text())

REST

IMG_PATH="/path/to/your/image1.jpg"

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
    "contents": [{
    "parts":[
        {
            "inline_data": {
            "mime_type":"image/jpeg",
            "data": "'"$(base64 $B64FLAGS $IMG_PATH)"'"
            }
        },
        {"text": "Caption this image."},
    ]
    }]
}' 2> /dev/null

Możesz też pobrać obraz z adresu URL, przekonwertować go na bajty i przekazać do generateContent, jak pokazano w przykładach poniżej.

Python

from google import genai
from google.genai import types

import requests

image_path = "https://goo.gle/instrument-img"
image_bytes = requests.get(image_path).content
image = types.Part.from_bytes(
  data=image_bytes, mime_type="image/jpeg"
)

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-flash-preview",
    contents=["What is this image?", image],
)

print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

async function main() {
  const ai = new GoogleGenAI({});

  const imageUrl = "https://goo.gle/instrument-img";

  const response = await fetch(imageUrl);
  const imageArrayBuffer = await response.arrayBuffer();
  const base64ImageData = Buffer.from(imageArrayBuffer).toString('base64');

  const result = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: [
    {
      inlineData: {
        mimeType: 'image/jpeg',
        data: base64ImageData,
      },
    },
    { text: "Caption this image." }
  ],
  });
  console.log(result.text);
}

main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "io"
  "net/http"
  "google.golang.org/genai"
)

func main() {
  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  // Download the image.
  imageResp, _ := http.Get("https://goo.gle/instrument-img")

  imageBytes, _ := io.ReadAll(imageResp.Body)

  parts := []*genai.Part{
    genai.NewPartFromBytes(imageBytes, "image/jpeg"),
    genai.NewPartFromText("Caption this image."),
  }

  contents := []*genai.Content{
    genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-3-flash-preview",
    contents,
    nil,
  )

  fmt.Println(result.Text())
}

REST

IMG_URL="https://goo.gle/instrument-img"

MIME_TYPE=$(curl -sIL "$IMG_URL" | grep -i '^content-type:' | awk -F ': ' '{print $2}' | sed 's/\r$//' | head -n 1)
if [[ -z "$MIME_TYPE" || ! "$MIME_TYPE" == image/* ]]; then
  MIME_TYPE="image/jpeg"
fi

# Check for macOS
if [[ "$(uname)" == "Darwin" ]]; then
  IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -b 0)
elif [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  IMAGE_B64=$(curl -sL "$IMG_URL" | base64)
else
  IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -w0)
fi

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {
              "inline_data": {
                "mime_type":"'"$MIME_TYPE"'",
                "data": "'"$IMAGE_B64"'"
              }
            },
            {"text": "Caption this image."}
        ]
      }]
    }' 2> /dev/null

Przesyłanie obrazów za pomocą interfejsu File API

W przypadku dużych plików lub jeśli chcesz wielokrotnie używać tego samego pliku obrazu, użyj interfejsu Files API. Poniższy kod przesyła plik obrazu, a następnie używa go w wywołaniu funkcji generateContent. Więcej informacji i przykłady znajdziesz w przewodniku po interfejsie Files API.

Python

from google import genai

client = genai.Client()

my_file = client.files.upload(file="path/to/sample.jpg")

response = client.models.generate_content(
    model="gemini-3-flash-preview",
    contents=[my_file, "Caption this image."],
)

print(response.text)

JavaScript

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const myfile = await ai.files.upload({
    file: "path/to/sample.jpg",
    config: { mimeType: "image/jpeg" },
  });

  const response = await ai.models.generateContent({
    model: "gemini-3-flash-preview",
    contents: createUserContent([
      createPartFromUri(myfile.uri, myfile.mimeType),
      "Caption this image.",
    ]),
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {
  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  uploadedFile, _ := client.Files.UploadFromPath(ctx, "path/to/sample.jpg", nil)

  parts := []*genai.Part{
      genai.NewPartFromText("Caption this image."),
      genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
  }

  contents := []*genai.Content{
      genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-3-flash-preview",
      contents,
      nil,
  )

  fmt.Println(result.Text())
}

REST

IMAGE_PATH="path/to/sample.jpg"
MIME_TYPE=$(file -b --mime-type "${IMAGE_PATH}")
NUM_BYTES=$(wc -c < "${IMAGE_PATH}")
DISPLAY_NAME=IMAGE

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "https://generativelanguage.googleapis.com/upload/v1beta/files" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${IMAGE_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq -r ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"file_data":{"mime_type": "'"${MIME_TYPE}"'", "file_uri": "'"${file_uri}"'"}},
          {"text": "Caption this image."}]
        }]
      }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

Prompty z wieloma obrazami

W jednym promcie możesz podać wiele obrazów, umieszczając w tablicy contents wiele obiektów imagePart. Mogą to być dane wbudowane (lokalne pliki lub adresy URL) i odwołania do interfejsu File API.

Python

from google import genai
from google.genai import types

client = genai.Client()

# Upload the first image
image1_path = "path/to/image1.jpg"
uploaded_file = client.files.upload(file=image1_path)

# Prepare the second image as inline data
image2_path = "path/to/image2.png"
with open(image2_path, 'rb') as f:
    img2_bytes = f.read()

# Create the prompt with text and multiple images
response = client.models.generate_content(

    model="gemini-3-flash-preview",
    contents=[
        "What is different between these two images?",
        uploaded_file,  # Use the uploaded file reference
        types.Part.from_bytes(
            data=img2_bytes,
            mime_type='image/png'
        )
    ]
)

print(response.text)

JavaScript

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";
import * as fs from "node:fs";

const ai = new GoogleGenAI({});

async function main() {
  // Upload the first image
  const image1_path = "path/to/image1.jpg";
  const uploadedFile = await ai.files.upload({
    file: image1_path,
    config: { mimeType: "image/jpeg" },
  });

  // Prepare the second image as inline data
  const image2_path = "path/to/image2.png";
  const base64Image2File = fs.readFileSync(image2_path, {
    encoding: "base64",
  });

  // Create the prompt with text and multiple images

  const response = await ai.models.generateContent({

    model: "gemini-3-flash-preview",
    contents: createUserContent([
      "What is different between these two images?",
      createPartFromUri(uploadedFile.uri, uploadedFile.mimeType),
      {
        inlineData: {
          mimeType: "image/png",
          data: base64Image2File,
        },
      },
    ]),
  });
  console.log(response.text);
}

await main();

Go

// Upload the first image
image1Path := "path/to/image1.jpg"
uploadedFile, _ := client.Files.UploadFromPath(ctx, image1Path, nil)

// Prepare the second image as inline data
image2Path := "path/to/image2.jpeg"
imgBytes, _ := os.ReadFile(image2Path)

parts := []*genai.Part{
  genai.NewPartFromText("What is different between these two images?"),
  genai.NewPartFromBytes(imgBytes, "image/jpeg"),
  genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
}

contents := []*genai.Content{
  genai.NewContentFromParts(parts, genai.RoleUser),
}

result, _ := client.Models.GenerateContent(
  ctx,
  "gemini-3-flash-preview",
  contents,
  nil,
)

fmt.Println(result.Text())

REST

# Upload the first image
IMAGE1_PATH="path/to/image1.jpg"
MIME1_TYPE=$(file -b --mime-type "${IMAGE1_PATH}")
NUM1_BYTES=$(wc -c < "${IMAGE1_PATH}")
DISPLAY_NAME1=IMAGE1

tmp_header_file1=upload-header1.tmp

curl "https://generativelanguage.googleapis.com/upload/v1beta/files" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -D upload-header1.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM1_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME1_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME1}'}}" 2> /dev/null

upload_url1=$(grep -i "x-goog-upload-url: " "${tmp_header_file1}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file1}"

curl "${upload_url1}" \
  -H "Content-Length: ${NUM1_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${IMAGE1_PATH}" 2> /dev/null > file_info1.json

file1_uri=$(jq ".file.uri" file_info1.json)
echo file1_uri=$file1_uri

# Prepare the second image (inline)
IMAGE2_PATH="path/to/image2.png"
MIME2_TYPE=$(file -b --mime-type "${IMAGE2_PATH}")

if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
  B64FLAGS="--input"
else
  B64FLAGS="-w0"
fi
IMAGE2_BASE64=$(base64 $B64FLAGS $IMAGE2_PATH)

# Now generate content using both images
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "What is different between these two images?"},
          {"file_data":{"mime_type": "'"${MIME1_TYPE}"'", "file_uri": '$file1_uri'}},
          {
            "inline_data": {
              "mime_type":"'"${MIME2_TYPE}"'",
              "data": "'"$IMAGE2_BASE64"'"
            }
          }
        ]
      }]
    }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

Wykrywanie obiektów

Modele są trenowane pod kątem wykrywania obiektów na obrazie i uzyskiwania współrzędnych ich ramek ograniczających. Współrzędne są skalowane do zakresu [0, 1000] względem wymiarów obrazu. Musisz przeskalować te współrzędne na podstawie oryginalnego rozmiaru obrazu.

Python

from google import genai
from google.genai import types
from PIL import Image
import json

client = genai.Client()
prompt = "Detect the all of the prominent items in the image. The box_2d should be [ymin, xmin, ymax, xmax] normalized to 0-1000."

image = Image.open("/path/to/image.png")

config = types.GenerateContentConfig(
  response_mime_type="application/json"
  )

response = client.models.generate_content(model="gemini-3-flash-preview",
                                          contents=[image, prompt],
                                          config=config
                                          )

width, height = image.size
bounding_boxes = json.loads(response.text)

converted_bounding_boxes = []
for bounding_box in bounding_boxes:
    abs_y1 = int(bounding_box["box_2d"][0]/1000 * height)
    abs_x1 = int(bounding_box["box_2d"][1]/1000 * width)
    abs_y2 = int(bounding_box["box_2d"][2]/1000 * height)
    abs_x2 = int(bounding_box["box_2d"][3]/1000 * width)
    converted_bounding_boxes.append([abs_x1, abs_y1, abs_x2, abs_y2])

print("Image size: ", width, height)
print("Bounding boxes:", converted_bounding_boxes)

Więcej przykładów znajdziesz w tych notatnikach w zbiorze Cookbook Gemini:

Podział na segmenty

Począwszy od Gemini 2.5, modele nie tylko wykrywają obiekty, ale także je segmentują i dostarczają ich maski konturowe.

Model prognozuje listę JSON, w której każdy element reprezentuje maskę segmentacji. Każdy element ma ramkę ograniczającą („box_2d”) w formacie [y0, x0, y1, x1] ze znormalizowanymi współrzędnymi z przedziału od 0 do 1000, etykietę („label”) identyfikującą obiekt oraz maskę segmentacji w ramce ograniczającej w formacie base64 zakodowanego pliku PNG, który jest mapą prawdopodobieństwa z wartościami z przedziału od 0 do 255. Maskę należy dopasować do wymiarów ramki ograniczającej, a następnie poddać binaryzacji przy użyciu progu ufności (127 w przypadku punktu środkowego).

Python

from google import genai
from google.genai import types
from PIL import Image, ImageDraw
import io
import base64
import json
import numpy as np
import os

client = genai.Client()

def parse_json(json_output: str):
  # Parsing out the markdown fencing
  lines = json_output.splitlines()
  for i, line in enumerate(lines):
    if line == "```json":
      json_output = "\n".join(lines[i+1:])  # Remove everything before "```json"
      output = json_output.split("```")[0]  # Remove everything after the closing "```"
      break  # Exit the loop once "```json" is found
  return json_output

def extract_segmentation_masks(image_path: str, output_dir: str = "segmentation_outputs"):
  # Load and resize image
  im = Image.open(image_path)
  im.thumbnail([1024, 1024], Image.Resampling.LANCZOS)

  prompt = """
  Give the segmentation masks for the wooden and glass items.
  Output a JSON list of segmentation masks where each entry contains the 2D
  bounding box in the key "box_2d", the segmentation mask in key "mask", and
  the text label in the key "label". Use descriptive labels.
  """

  config = types.GenerateContentConfig(
    thinking_config=types.ThinkingConfig(thinking_budget=0) # set thinking_budget to 0 for better results in object detection
  )

  response = client.models.generate_content(
    model="gemini-3-flash-preview",
    contents=[prompt, im], # Pillow images can be directly passed as inputs (which will be converted by the SDK)
    config=config
  )

  # Parse JSON response
  items = json.loads(parse_json(response.text))

  # Create output directory
  os.makedirs(output_dir, exist_ok=True)

  # Process each mask
  for i, item in enumerate(items):
      # Get bounding box coordinates
      box = item["box_2d"]
      y0 = int(box[0] / 1000 * im.size[1])
      x0 = int(box[1] / 1000 * im.size[0])
      y1 = int(box[2] / 1000 * im.size[1])
      x1 = int(box[3] / 1000 * im.size[0])

      # Skip invalid boxes
      if y0 >= y1 or x0 >= x1:
          continue

      # Process mask
      png_str = item["mask"]
      if not png_str.startswith("data:image/png;base64,"):
          continue

      # Remove prefix
      png_str = png_str.removeprefix("data:image/png;base64,")
      mask_data = base64.b64decode(png_str)
      mask = Image.open(io.BytesIO(mask_data))

      # Resize mask to match bounding box
      mask = mask.resize((x1 - x0, y1 - y0), Image.Resampling.BILINEAR)

      # Convert mask to numpy array for processing
      mask_array = np.array(mask)

      # Create overlay for this mask
      overlay = Image.new('RGBA', im.size, (0, 0, 0, 0))
      overlay_draw = ImageDraw.Draw(overlay)

      # Create overlay for the mask
      color = (255, 255, 255, 200)
      for y in range(y0, y1):
          for x in range(x0, x1):
              if mask_array[y - y0, x - x0] > 128:  # Threshold for mask
                  overlay_draw.point((x, y), fill=color)

      # Save individual mask and its overlay
      mask_filename = f"{item['label']}_{i}_mask.png"
      overlay_filename = f"{item['label']}_{i}_overlay.png"

      mask.save(os.path.join(output_dir, mask_filename))

      # Create and save overlay
      composite = Image.alpha_composite(im.convert('RGBA'), overlay)
      composite.save(os.path.join(output_dir, overlay_filename))
      print(f"Saved mask and overlay for {item['label']} to {output_dir}")

# Example usage
if __name__ == "__main__":
  extract_segmentation_masks("path/to/image.png")

Bardziej szczegółowy przykład znajdziesz w przykładzie segmentacji w przewodniku.

Stół z babeczkami, na którym wyróżniono drewniane i szklane przedmioty
Przykładowe dane wyjściowe segmentacji z obiektami i maskami segmentacji

Obsługiwane formaty obrazów

Gemini obsługuje te typy MIME formatów obrazów:

  • PNG – image/png
  • JPEG – image/jpeg
  • WEBP - image/webp
  • HEIC – image/heic
  • HEIF – image/heif

Więcej informacji o innych metodach wprowadzania plików znajdziesz w przewodniku Metody wprowadzania plików.

Uprawnienia

Wszystkie wersje modelu Gemini są wielomodalne i mogą być wykorzystywane w szerokim zakresie zadań związanych z przetwarzaniem obrazów i rozpoznawaniem obrazów, w tym m.in. do tworzenia podpisów do obrazów, odpowiadania na pytania dotyczące obrazów, klasyfikowania obrazów, wykrywania obiektów i segmentacji.

W zależności od wymagań dotyczących jakości i skuteczności Gemini może zmniejszyć potrzebę korzystania ze specjalistycznych modeli uczenia maszynowego.

Najnowsze wersje modeli są specjalnie trenowane, aby zwiększać dokładność wykonywania specjalistycznych zadań oprócz ogólnych funkcji, takich jak ulepszone wykrywanie obiektówsegmentacja.

Ograniczenia i najważniejsze informacje techniczne

Limit plików

Modele Gemini obsługują maksymalnie 3600 plików obrazów na żądanie.

Obliczanie tokenów

  • 258 tokenów, jeśli oba wymiary są mniejsze lub równe 384 pikselom. Większe obrazy są dzielone na kafelki o rozmiarze 768 x 768 pikseli, z których każdy kosztuje 258 tokenów.

Przybliżony wzór na obliczenie liczby płytek jest następujący:

  • Oblicz rozmiar jednostki przycięcia, który wynosi w przybliżeniu: floor(min(szerokość, wysokość) / 1,5).
  • Podziel każdy wymiar przez rozmiar jednostki przycinania i pomnóż przez siebie, aby uzyskać liczbę kafelków.

Na przykład w przypadku obrazu o wymiarach 960 x 540 jednostka przycięcia będzie miała rozmiar 360. Podziel każdy wymiar przez 360, a liczba kafelków wyniesie 3 × 2 = 6.

Rozdzielczość multimediów

Gemini 3 wprowadza szczegółową kontrolę nad multimodalnym przetwarzaniem obrazu za pomocą parametru media_resolution. Parametr media_resolution określa maksymalną liczbę tokenów przypisanych do każdego obrazu wejściowego lub klatki filmu. Wyższe rozdzielczości zwiększają zdolność modelu do odczytywania drobnego tekstu lub rozpoznawania małych szczegółów, ale zwiększają zużycie tokenów i opóźnienie.

Więcej informacji o tym parametrze i jego wpływie na obliczenia tokenów znajdziesz w przewodniku rozdzielczość multimediów.

Porady i sprawdzone metody

  • Sprawdź, czy obrazy są prawidłowo obrócone.
  • Używaj wyraźnych, nierozmytych obrazów.
  • Jeśli używasz pojedynczego obrazu z tekstem, umieść prompt tekstowy po części obrazu w tablicy contents.

Co dalej?

Z tego przewodnika dowiesz się, jak przesyłać pliki graficzne i generować dane wyjściowe w postaci tekstu na podstawie danych wejściowych w postaci obrazów. Więcej informacji znajdziesz w tych materiałach:

  • Interfejs Files API: dowiedz się więcej o przesyłaniu plików i zarządzaniu nimi na potrzeby Gemini.
  • Instrukcje systemowe: instrukcje systemowe pozwalają sterować zachowaniem modelu na podstawie konkretnych potrzeb i przypadków użycia.
  • Strategie promptowania plików: interfejs Gemini API obsługuje promptowanie za pomocą danych tekstowych, obrazów, dźwięku i wideo, czyli promptowanie multimodalne.
  • Wskazówki dotyczące bezpieczeństwa: modele generatywnej AI czasami tworzą nieoczekiwane wyniki, np. niedokładne, stronnicze lub obraźliwe. Przetwarzanie końcowe i ocena przez weryfikatora są niezbędne, aby ograniczyć ryzyko szkód wynikających z takich danych wyjściowych.