Tool use with Live API

Tính năng sử dụng công cụ cho phép Live API không chỉ dừng lại ở việc trò chuyện mà còn có thể thực hiện các hành động trong thế giới thực và lấy bối cảnh bên ngoài trong khi vẫn duy trì kết nối theo thời gian thực. Bạn có thể xác định các công cụ như Gọi hàm, Thực thi mãTìm kiếm trên Google bằng Live API.

Tổng quan về các công cụ được hỗ trợ

Dưới đây là thông tin tổng quan ngắn gọn về các công cụ có sẵn cho từng mô hình:

Công cụ Mô hình xếp tầng
gemini-live-2.5-flash-preview
gemini-2.0-flash-live-001
gemini-2.5-flash-preview-native-audio-dialog gemini-2.5-flash-exp-native-audio-thinking-dialog
Tìm kiếm
Gọi hàm Không
Thực thi mã Không Không
Ngữ cảnh URL Không Không

Gọi hàm

Live API hỗ trợ chức năng gọi, giống như các yêu cầu tạo nội dung thông thường. Tính năng gọi hàm cho phép Live API tương tác với dữ liệu và chương trình bên ngoài, giúp tăng đáng kể những gì ứng dụng của bạn có thể thực hiện.

Bạn có thể xác định các khai báo hàm trong cấu hình phiên. Sau khi nhận được lệnh gọi công cụ, ứng dụng khách phải phản hồi bằng một danh sách các đối tượng FunctionResponse bằng phương thức session.send_tool_response.

Hãy xem Hướng dẫn gọi hàm để tìm hiểu thêm.

Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-live-2.5-flash-preview"

# Simple function definitions
turn_on_the_lights = {"name": "turn_on_the_lights"}
turn_off_the_lights = {"name": "turn_off_the_lights"}

tools = [{"function_declarations": [turn_on_the_lights, turn_off_the_lights]}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "Turn on the lights please"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)
            elif chunk.tool_call:
                function_responses = []
                for fc in chunk.tool_call.function_calls:
                    function_response = types.FunctionResponse(
                        id=fc.id,
                        name=fc.name,
                        response={ "result": "ok" } # simple, hard-coded function response
                    )
                    function_responses.append(function_response)

                await session.send_tool_response(function_responses=function_responses)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-live-2.5-flash-preview';

// Simple function definitions
const turn_on_the_lights = { name: "turn_on_the_lights" } // , description: '...', parameters: { ... }
const turn_off_the_lights = { name: "turn_off_the_lights" }

const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]

const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'Turn on the lights please';
  session.sendClientContent({ turns: inputTurns });

  let turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
      }
    }
    else if (turn.toolCall) {
      const functionResponses = [];
      for (const fc of turn.toolCall.functionCalls) {
        functionResponses.push({
          id: fc.id,
          name: fc.name,
          response: { result: "ok" } // simple, hard-coded function response
        });
      }

      console.debug('Sending tool response...\n');
      session.sendToolResponse({ functionResponses: functionResponses });
    }
  }

  // Check again for new messages
  turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
      }
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Từ một câu lệnh duy nhất, mô hình có thể tạo nhiều lệnh gọi hàm và mã cần thiết để liên kết các đầu ra của chúng. Mã này thực thi trong môi trường hộp cát, tạo ra các thông báo BidiGenerateContentToolCall tiếp theo.

Gọi hàm không đồng bộ

Theo mặc định, tính năng gọi hàm sẽ thực thi tuần tự, tức là quá trình thực thi sẽ tạm dừng cho đến khi có kết quả của từng lệnh gọi hàm. Điều này đảm bảo quá trình xử lý tuần tự, tức là bạn sẽ không thể tiếp tục tương tác với mô hình trong khi các hàm đang chạy.

Nếu không muốn chặn cuộc trò chuyện, bạn có thể yêu cầu mô hình chạy các hàm không đồng bộ. Để làm như vậy, trước tiên bạn cần thêm một behavior vào định nghĩa hàm:

Python

  # Non-blocking function definitions
  turn_on_the_lights = {"name": "turn_on_the_lights", "behavior": "NON_BLOCKING"} # turn_on_the_lights will run asynchronously
  turn_off_the_lights = {"name": "turn_off_the_lights"} # turn_off_the_lights will still pause all interactions with the model

JavaScript

import { GoogleGenAI, Modality, Behavior } from '@google/genai';

// Non-blocking function definitions
const turn_on_the_lights = {name: "turn_on_the_lights", behavior: Behavior.NON_BLOCKING}

// Blocking function definitions
const turn_off_the_lights = {name: "turn_off_the_lights"}

const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]

NON-BLOCKING đảm bảo hàm chạy không đồng bộ trong khi bạn có thể tiếp tục tương tác với mô hình.

Sau đó, bạn cần cho mô hình biết cách hoạt động khi nhận được FunctionResponse bằng cách sử dụng tham số scheduling. Bạn có thể:

  • Tạm dừng những gì đang làm và cho bạn biết ngay về câu trả lời mà nó nhận được (scheduling="INTERRUPT"),
  • Chờ đến khi quá trình này hoàn tất những gì đang làm (scheduling="WHEN_IDLE"),
  • Hoặc không làm gì cả và sử dụng kiến thức đó sau này trong cuộc thảo luận (scheduling="SILENT")

Python

# for a non-blocking function definition, apply scheduling in the function response:
  function_response = types.FunctionResponse(
      id=fc.id,
      name=fc.name,
      response={
          "result": "ok",
          "scheduling": "INTERRUPT" # Can also be WHEN_IDLE or SILENT
      }
  )

JavaScript

import { GoogleGenAI, Modality, Behavior, FunctionResponseScheduling } from '@google/genai';

// for a non-blocking function definition, apply scheduling in the function response:
const functionResponse = {
  id: fc.id,
  name: fc.name,
  response: {
    result: "ok",
    scheduling: FunctionResponseScheduling.INTERRUPT  // Can also be WHEN_IDLE or SILENT
  }
}

Thực thi mã

Bạn có thể xác định quá trình thực thi mã trong cấu hình phiên. Điều này cho phép Live API tạo và thực thi mã Python, đồng thời thực hiện các phép tính một cách linh hoạt để mang lại kết quả tốt hơn cho bạn. Hãy xem Hướng dẫn thực thi mã để tìm hiểu thêm.

Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-live-2.5-flash-preview"

tools = [{'code_execution': {}}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "Compute the largest prime palindrome under 100000."
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)

                model_turn = chunk.server_content.model_turn
                if model_turn:
                    for part in model_turn.parts:
                      if part.executable_code is not None:
                        print(part.executable_code.code)

                      if part.code_execution_result is not None:
                        print(part.code_execution_result.output)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-live-2.5-flash-preview';

const tools = [{codeExecution: {}}]
const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'Compute the largest prime palindrome under 100000.';
  session.sendClientContent({ turns: inputTurns });

  const turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
        else if (part.executableCode) {
          console.debug('executableCode: %s\n', part.executableCode.code);
        }
        else if (part.codeExecutionResult) {
          console.debug('codeExecutionResult: %s\n', part.codeExecutionResult.output);
        }
      }
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Bạn có thể bật tính năng Grounding bằng Google Tìm kiếm trong quá trình định cấu hình phiên. Điều này giúp tăng độ chính xác của Live API và ngăn chặn hiện tượng ảo giác. Hãy xem hướng dẫn về việc căn cứ vào thông tin thực tế để tìm hiểu thêm.

Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-live-2.5-flash-preview"

tools = [{'google_search': {}}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "When did the last Brazil vs. Argentina soccer match happen?"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)

                # The model might generate and execute Python code to use Search
                model_turn = chunk.server_content.model_turn
                if model_turn:
                    for part in model_turn.parts:
                      if part.executable_code is not None:
                        print(part.executable_code.code)

                      if part.code_execution_result is not None:
                        print(part.code_execution_result.output)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-live-2.5-flash-preview';

const tools = [{googleSearch: {}}]
const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'When did the last Brazil vs. Argentina soccer match happen?';
  session.sendClientContent({ turns: inputTurns });

  const turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
        else if (part.executableCode) {
          console.debug('executableCode: %s\n', part.executableCode.code);
        }
        else if (part.codeExecutionResult) {
          console.debug('codeExecutionResult: %s\n', part.codeExecutionResult.output);
        }
      }
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Kết hợp nhiều công cụ

Bạn có thể kết hợp nhiều công cụ trong Live API, từ đó tăng cường hơn nữa các chức năng của ứng dụng:

Python

prompt = """
Hey, I need you to do three things for me.

1. Compute the largest prime palindrome under 100000.
2. Then use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
3. Turn on the lights

Thanks!
"""

tools = [
    {"google_search": {}},
    {"code_execution": {}},
    {"function_declarations": [turn_on_the_lights, turn_off_the_lights]},
]

config = {"response_modalities": ["TEXT"], "tools": tools}

# ... remaining model call

JavaScript

const prompt = `Hey, I need you to do three things for me.

1. Compute the largest prime palindrome under 100000.
2. Then use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
3. Turn on the lights

Thanks!
`

const tools = [
  { googleSearch: {} },
  { codeExecution: {} },
  { functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }
]

const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

// ... remaining model call

Bước tiếp theo