Tool use with Live API

El uso de herramientas permite que la API de Live vaya más allá de la conversación, ya que le permite realizar acciones en el mundo real y extraer contexto externo, a la vez que mantiene una conexión en tiempo real. Puedes definir herramientas como Llamada a función y Búsqueda de Google con la API en vivo.

Descripción general de las herramientas compatibles

A continuación, se incluye una breve descripción general de las herramientas disponibles para los modelos de la API de Live:

Herramienta gemini-2.5-flash-native-audio-preview-09-2025
Buscar
Llamada a función
Google Maps No
Ejecución de código No
Contexto de la URL No

Llamada a función

La API de Live admite llamadas a funciones, al igual que las solicitudes de generación de contenido normales. Las llamadas a funciones permiten que la API en vivo interactúe con datos y programas externos, lo que aumenta en gran medida lo que pueden lograr tus aplicaciones.

Puedes definir declaraciones de funciones como parte de la configuración de la sesión. Después de recibir las llamadas a herramientas, el cliente debe responder con una lista de objetos FunctionResponse usando el método session.send_tool_response.

Consulta el instructivo sobre llamadas a funciones para obtener más información.

Python

import asyncio
import wave
from google import genai
from google.genai import types

client = genai.Client()

model = "gemini-2.5-flash-native-audio-preview-09-2025"

# Simple function definitions
turn_on_the_lights = {"name": "turn_on_the_lights"}
turn_off_the_lights = {"name": "turn_off_the_lights"}

tools = [{"function_declarations": [turn_on_the_lights, turn_off_the_lights]}]
config = {"response_modalities": ["AUDIO"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "Turn on the lights please"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        wf = wave.open("audio.wav", "wb")
        wf.setnchannels(1)
        wf.setsampwidth(2)
        wf.setframerate(24000)  # Output is 24kHz

        async for response in session.receive():
            if response.data is not None:
                wf.writeframes(response.data)
            elif response.tool_call:
                print("The tool was called")
                function_responses = []
                for fc in response.tool_call.function_calls:
                    function_response = types.FunctionResponse(
                        id=fc.id,
                        name=fc.name,
                        response={ "result": "ok" } # simple, hard-coded function response
                    )
                    function_responses.append(function_response)

                await session.send_tool_response(function_responses=function_responses)

        wf.close()

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';
import * as fs from "node:fs";
import pkg from 'wavefile';  // npm install wavefile
const { WaveFile } = pkg;

const ai = new GoogleGenAI({});
const model = 'gemini-2.5-flash-native-audio-preview-09-2025';

// Simple function definitions
const turn_on_the_lights = { name: "turn_on_the_lights" } // , description: '...', parameters: { ... }
const turn_off_the_lights = { name: "turn_off_the_lights" }

const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]

const config = {
  responseModalities: [Modality.AUDIO],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'Turn on the lights please';
  session.sendClientContent({ turns: inputTurns });

  let turns = await handleTurn();

  for (const turn of turns) {
    if (turn.toolCall) {
      console.debug('A tool was called');
      const functionResponses = [];
      for (const fc of turn.toolCall.functionCalls) {
        functionResponses.push({
          id: fc.id,
          name: fc.name,
          response: { result: "ok" } // simple, hard-coded function response
        });
      }

      console.debug('Sending tool response...\n');
      session.sendToolResponse({ functionResponses: functionResponses });
    }
  }

  // Check again for new messages
  turns = await handleTurn();

  // Combine audio data strings and save as wave file
  const combinedAudio = turns.reduce((acc, turn) => {
      if (turn.data) {
          const buffer = Buffer.from(turn.data, 'base64');
          const intArray = new Int16Array(buffer.buffer, buffer.byteOffset, buffer.byteLength / Int16Array.BYTES_PER_ELEMENT);
          return acc.concat(Array.from(intArray));
      }
      return acc;
  }, []);

  const audioBuffer = new Int16Array(combinedAudio);

  const wf = new WaveFile();
  wf.fromScratch(1, 24000, '16', audioBuffer);  // output is 24kHz
  fs.writeFileSync('audio.wav', wf.toBuffer());

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

A partir de una sola instrucción, el modelo puede generar varias llamadas a funciones y el código necesario para encadenar sus resultados. Este código se ejecuta en un entorno de zona de pruebas y genera mensajes BidiGenerateContentToolCall posteriores.

Llamada a función asíncrona

De forma predeterminada, la llamada a funciones se ejecuta de forma secuencial, lo que significa que la ejecución se detiene hasta que están disponibles los resultados de cada llamada a función. Esto garantiza el procesamiento secuencial, lo que significa que no podrás seguir interactuando con el modelo mientras se ejecutan las funciones.

Si no quieres bloquear la conversación, puedes indicarle al modelo que ejecute las funciones de forma asíncrona. Para ello, primero debes agregar un behavior a las definiciones de funciones:

Python

# Non-blocking function definitions
turn_on_the_lights = {"name": "turn_on_the_lights", "behavior": "NON_BLOCKING"} # turn_on_the_lights will run asynchronously
turn_off_the_lights = {"name": "turn_off_the_lights"} # turn_off_the_lights will still pause all interactions with the model

JavaScript

import { GoogleGenAI, Modality, Behavior } from '@google/genai';

// Non-blocking function definitions
const turn_on_the_lights = {name: "turn_on_the_lights", behavior: Behavior.NON_BLOCKING}

// Blocking function definitions
const turn_off_the_lights = {name: "turn_off_the_lights"}

const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]

NON-BLOCKING garantiza que la función se ejecute de forma asíncrona mientras puedes seguir interactuando con el modelo.

Luego, debes indicarle al modelo cómo comportarse cuando recibe el FunctionResponse con el parámetro scheduling. Puede hacer lo siguiente:

  • Interrumpir lo que está haciendo y contarte sobre la respuesta que obtuvo de inmediato (scheduling="INTERRUPT")
  • Espera a que termine lo que está haciendo (scheduling="WHEN_IDLE").
  • O bien, no hacer nada y usar ese conocimiento más adelante en la conversación (scheduling="SILENT")

Python

# for a non-blocking function definition, apply scheduling in the function response:
  function_response = types.FunctionResponse(
      id=fc.id,
      name=fc.name,
      response={
          "result": "ok",
          "scheduling": "INTERRUPT" # Can also be WHEN_IDLE or SILENT
      }
  )

JavaScript

import { GoogleGenAI, Modality, Behavior, FunctionResponseScheduling } from '@google/genai';

// for a non-blocking function definition, apply scheduling in the function response:
const functionResponse = {
  id: fc.id,
  name: fc.name,
  response: {
    result: "ok",
    scheduling: FunctionResponseScheduling.INTERRUPT  // Can also be WHEN_IDLE or SILENT
  }
}

Puedes habilitar la Fundamentación con la Búsqueda de Google como parte de la configuración de la sesión. Esto aumenta la precisión de la API de Live y evita las alucinaciones. Consulta el instructivo sobre la fundamentación para obtener más información.

Python

import asyncio
import wave
from google import genai
from google.genai import types

client = genai.Client()

model = "gemini-2.5-flash-native-audio-preview-09-2025"

tools = [{'google_search': {}}]
config = {"response_modalities": ["AUDIO"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "When did the last Brazil vs. Argentina soccer match happen?"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        wf = wave.open("audio.wav", "wb")
        wf.setnchannels(1)
        wf.setsampwidth(2)
        wf.setframerate(24000)  # Output is 24kHz

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.data is not None:
                    wf.writeframes(chunk.data)

                # The model might generate and execute Python code to use Search
                model_turn = chunk.server_content.model_turn
                if model_turn:
                    for part in model_turn.parts:
                        if part.executable_code is not None:
                            print(part.executable_code.code)

                        if part.code_execution_result is not None:
                            print(part.code_execution_result.output)

        wf.close()

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';
import * as fs from "node:fs";
import pkg from 'wavefile';  // npm install wavefile
const { WaveFile } = pkg;

const ai = new GoogleGenAI({});
const model = 'gemini-2.5-flash-native-audio-preview-09-2025';

const tools = [{ googleSearch: {} }]
const config = {
  responseModalities: [Modality.AUDIO],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'When did the last Brazil vs. Argentina soccer match happen?';
  session.sendClientContent({ turns: inputTurns });

  let turns = await handleTurn();

  let combinedData = '';
  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.executableCode) {
          console.debug('executableCode: %s\n', part.executableCode.code);
        }
        else if (part.codeExecutionResult) {
          console.debug('codeExecutionResult: %s\n', part.codeExecutionResult.output);
        }
        else if (part.inlineData && typeof part.inlineData.data === 'string') {
          combinedData += atob(part.inlineData.data);
        }
      }
    }
  }

  // Convert the base64-encoded string of bytes into a Buffer.
  const buffer = Buffer.from(combinedData, 'binary');

  // The buffer contains raw bytes. For 16-bit audio, we need to interpret every 2 bytes as a single sample.
  const intArray = new Int16Array(buffer.buffer, buffer.byteOffset, buffer.byteLength / Int16Array.BYTES_PER_ELEMENT);

  const wf = new WaveFile();
  // The API returns 16-bit PCM audio at a 24kHz sample rate.
  wf.fromScratch(1, 24000, '16', intArray);
  fs.writeFileSync('audio.wav', wf.toBuffer());

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Combinación de varias herramientas

Puedes combinar varias herramientas dentro de la API de Live, lo que aumenta aún más las capacidades de tu aplicación:

Python

prompt = """
Hey, I need you to do two things for me.

1. Use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
2. Then turn on the lights

Thanks!
"""

tools = [
    {"google_search": {}},
    {"function_declarations": [turn_on_the_lights, turn_off_the_lights]},
]

config = {"response_modalities": ["AUDIO"], "tools": tools}

# ... remaining model call

JavaScript

const prompt = `Hey, I need you to do two things for me.

1. Use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
2. Then turn on the lights

Thanks!
`

const tools = [
  { googleSearch: {} },
  { functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }
]

const config = {
  responseModalities: [Modality.AUDIO],
  tools: tools
}

// ... remaining model call

¿Qué sigue?