Përdorimi i mjeteve i lejon Live API-t të shkojë përtej bisedës së thjeshtë duke e mundësuar atë të kryejë veprime në botën reale dhe të tërheqë kontekst të jashtëm, ndërkohë që ruan një lidhje në kohë reale. Ju mund të përcaktoni mjete të tilla si Thirrja e Funksioneve dhe Kërkimi në Google me Live API.
Përmbledhje e mjeteve të mbështetura
Ja një përmbledhje e shkurtër e mjeteve të disponueshme për modelet Live API:
| Mjet | gemini-2.5-flash-native-audio-preview-09-2025 |
|---|---|
| Kërko | Po |
| Thirrja e funksionit | Po |
| Hartat e Google-it | Jo |
| Ekzekutimi i kodit | Jo |
| Konteksti i URL-së | Jo |
Thirrja e funksionit
API-ja Live mbështet thirrjen e funksioneve, njësoj si kërkesat e rregullta për gjenerimin e përmbajtjes. Thirrja e funksioneve lejon që API-ja Live të bashkëveprojë me të dhëna dhe programe të jashtme, duke rritur ndjeshëm atë që mund të arrijnë aplikacionet tuaja.
Ju mund të përcaktoni deklaratat e funksioneve si pjesë të konfigurimit të sesionit. Pas marrjes së thirrjeve të mjeteve, klienti duhet të përgjigjet me një listë të objekteve FunctionResponse duke përdorur metodën session.send_tool_response .
Shihni tutorialin e thirrjes së funksionit për të mësuar më shumë.
Python
import asyncio
import wave
from google import genai
from google.genai import types
client = genai.Client()
model = "gemini-2.5-flash-native-audio-preview-09-2025"
# Simple function definitions
turn_on_the_lights = {"name": "turn_on_the_lights"}
turn_off_the_lights = {"name": "turn_off_the_lights"}
tools = [{"function_declarations": [turn_on_the_lights, turn_off_the_lights]}]
config = {"response_modalities": ["AUDIO"], "tools": tools}
async def main():
async with client.aio.live.connect(model=model, config=config) as session:
prompt = "Turn on the lights please"
await session.send_client_content(turns={"parts": [{"text": prompt}]})
wf = wave.open("audio.wav", "wb")
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(24000) # Output is 24kHz
async for response in session.receive():
if response.data is not None:
wf.writeframes(response.data)
elif response.tool_call:
print("The tool was called")
function_responses = []
for fc in response.tool_call.function_calls:
function_response = types.FunctionResponse(
id=fc.id,
name=fc.name,
response={ "result": "ok" } # simple, hard-coded function response
)
function_responses.append(function_response)
await session.send_tool_response(function_responses=function_responses)
wf.close()
if __name__ == "__main__":
asyncio.run(main())
JavaScript
import { GoogleGenAI, Modality } from '@google/genai';
import * as fs from "node:fs";
import pkg from 'wavefile'; // npm install wavefile
const { WaveFile } = pkg;
const ai = new GoogleGenAI({});
const model = 'gemini-2.5-flash-native-audio-preview-09-2025';
// Simple function definitions
const turn_on_the_lights = { name: "turn_on_the_lights" } // , description: '...', parameters: { ... }
const turn_off_the_lights = { name: "turn_off_the_lights" }
const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]
const config = {
responseModalities: [Modality.AUDIO],
tools: tools
}
async function live() {
const responseQueue = [];
async function waitMessage() {
let done = false;
let message = undefined;
while (!done) {
message = responseQueue.shift();
if (message) {
done = true;
} else {
await new Promise((resolve) => setTimeout(resolve, 100));
}
}
return message;
}
async function handleTurn() {
const turns = [];
let done = false;
while (!done) {
const message = await waitMessage();
turns.push(message);
if (message.serverContent && message.serverContent.turnComplete) {
done = true;
} else if (message.toolCall) {
done = true;
}
}
return turns;
}
const session = await ai.live.connect({
model: model,
callbacks: {
onopen: function () {
console.debug('Opened');
},
onmessage: function (message) {
responseQueue.push(message);
},
onerror: function (e) {
console.debug('Error:', e.message);
},
onclose: function (e) {
console.debug('Close:', e.reason);
},
},
config: config,
});
const inputTurns = 'Turn on the lights please';
session.sendClientContent({ turns: inputTurns });
let turns = await handleTurn();
for (const turn of turns) {
if (turn.toolCall) {
console.debug('A tool was called');
const functionResponses = [];
for (const fc of turn.toolCall.functionCalls) {
functionResponses.push({
id: fc.id,
name: fc.name,
response: { result: "ok" } // simple, hard-coded function response
});
}
console.debug('Sending tool response...\n');
session.sendToolResponse({ functionResponses: functionResponses });
}
}
// Check again for new messages
turns = await handleTurn();
// Combine audio data strings and save as wave file
const combinedAudio = turns.reduce((acc, turn) => {
if (turn.data) {
const buffer = Buffer.from(turn.data, 'base64');
const intArray = new Int16Array(buffer.buffer, buffer.byteOffset, buffer.byteLength / Int16Array.BYTES_PER_ELEMENT);
return acc.concat(Array.from(intArray));
}
return acc;
}, []);
const audioBuffer = new Int16Array(combinedAudio);
const wf = new WaveFile();
wf.fromScratch(1, 24000, '16', audioBuffer); // output is 24kHz
fs.writeFileSync('audio.wav', wf.toBuffer());
session.close();
}
async function main() {
await live().catch((e) => console.error('got error', e));
}
main();
Nga një kërkesë e vetme, modeli mund të gjenerojë thirrje të shumëfishta funksionesh dhe kodin e nevojshëm për të lidhur rezultatet e tyre në zinxhir. Ky kod ekzekutohet në një mjedis sandbox, duke gjeneruar mesazhe pasuese BidiGenerateContentToolCall .
Thirrja e funksionit asinkron
Thirrja e funksionit ekzekutohet në mënyrë sekuenciale si parazgjedhje, që do të thotë se ekzekutimi ndalet derisa rezultatet e secilës thirrje funksioni të jenë të disponueshme. Kjo siguron përpunimin sekuencial, që do të thotë se nuk do të jeni në gjendje të vazhdoni të bashkëveproni me modelin ndërsa funksionet janë duke u ekzekutuar.
Nëse nuk doni ta bllokoni bisedën, mund t'i thoni modelit që t'i ekzekutojë funksionet në mënyrë asinkrone. Për ta bërë këtë, së pari duhet të shtoni një behavior në përkufizimet e funksionit:
Python
# Non-blocking function definitions
turn_on_the_lights = {"name": "turn_on_the_lights", "behavior": "NON_BLOCKING"} # turn_on_the_lights will run asynchronously
turn_off_the_lights = {"name": "turn_off_the_lights"} # turn_off_the_lights will still pause all interactions with the model
JavaScript
import { GoogleGenAI, Modality, Behavior } from '@google/genai';
// Non-blocking function definitions
const turn_on_the_lights = {name: "turn_on_the_lights", behavior: Behavior.NON_BLOCKING}
// Blocking function definitions
const turn_off_the_lights = {name: "turn_off_the_lights"}
const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]
NON-BLOCKING siguron që funksioni të funksionojë në mënyrë asinkrone ndërsa ju mund të vazhdoni të bashkëveproni me modelin.
Pastaj duhet t'i tregoni modelit se si të sillet kur merr FunctionResponse duke përdorur parametrin scheduling . Ai mund të:
- Ndërprit atë që po bën dhe të të tregojë menjëherë për përgjigjen që mori (
scheduling="INTERRUPT"), - Prit derisa të përfundojë me atë që po bën aktualisht (
scheduling="WHEN_IDLE"), Ose mos bëj asgjë dhe përdore atë njohuri më vonë në diskutim (
scheduling="SILENT")
Python
# for a non-blocking function definition, apply scheduling in the function response:
function_response = types.FunctionResponse(
id=fc.id,
name=fc.name,
response={
"result": "ok",
"scheduling": "INTERRUPT" # Can also be WHEN_IDLE or SILENT
}
)
JavaScript
import { GoogleGenAI, Modality, Behavior, FunctionResponseScheduling } from '@google/genai';
// for a non-blocking function definition, apply scheduling in the function response:
const functionResponse = {
id: fc.id,
name: fc.name,
response: {
result: "ok",
scheduling: FunctionResponseScheduling.INTERRUPT // Can also be WHEN_IDLE or SILENT
}
}
Bazë me Kërkimin në Google
Mund ta aktivizoni Grounding me Google Search si pjesë të konfigurimit të sesionit. Kjo rrit saktësinë e Live API dhe parandalon halucinacionet. Shihni tutorialin e Grounding për të mësuar më shumë.
Python
import asyncio
import wave
from google import genai
from google.genai import types
client = genai.Client()
model = "gemini-2.5-flash-native-audio-preview-09-2025"
tools = [{'google_search': {}}]
config = {"response_modalities": ["AUDIO"], "tools": tools}
async def main():
async with client.aio.live.connect(model=model, config=config) as session:
prompt = "When did the last Brazil vs. Argentina soccer match happen?"
await session.send_client_content(turns={"parts": [{"text": prompt}]})
wf = wave.open("audio.wav", "wb")
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(24000) # Output is 24kHz
async for chunk in session.receive():
if chunk.server_content:
if chunk.data is not None:
wf.writeframes(chunk.data)
# The model might generate and execute Python code to use Search
model_turn = chunk.server_content.model_turn
if model_turn:
for part in model_turn.parts:
if part.executable_code is not None:
print(part.executable_code.code)
if part.code_execution_result is not None:
print(part.code_execution_result.output)
wf.close()
if __name__ == "__main__":
asyncio.run(main())
JavaScript
import { GoogleGenAI, Modality } from '@google/genai';
import * as fs from "node:fs";
import pkg from 'wavefile'; // npm install wavefile
const { WaveFile } = pkg;
const ai = new GoogleGenAI({});
const model = 'gemini-2.5-flash-native-audio-preview-09-2025';
const tools = [{ googleSearch: {} }]
const config = {
responseModalities: [Modality.AUDIO],
tools: tools
}
async function live() {
const responseQueue = [];
async function waitMessage() {
let done = false;
let message = undefined;
while (!done) {
message = responseQueue.shift();
if (message) {
done = true;
} else {
await new Promise((resolve) => setTimeout(resolve, 100));
}
}
return message;
}
async function handleTurn() {
const turns = [];
let done = false;
while (!done) {
const message = await waitMessage();
turns.push(message);
if (message.serverContent && message.serverContent.turnComplete) {
done = true;
} else if (message.toolCall) {
done = true;
}
}
return turns;
}
const session = await ai.live.connect({
model: model,
callbacks: {
onopen: function () {
console.debug('Opened');
},
onmessage: function (message) {
responseQueue.push(message);
},
onerror: function (e) {
console.debug('Error:', e.message);
},
onclose: function (e) {
console.debug('Close:', e.reason);
},
},
config: config,
});
const inputTurns = 'When did the last Brazil vs. Argentina soccer match happen?';
session.sendClientContent({ turns: inputTurns });
let turns = await handleTurn();
let combinedData = '';
for (const turn of turns) {
if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
for (const part of turn.serverContent.modelTurn.parts) {
if (part.executableCode) {
console.debug('executableCode: %s\n', part.executableCode.code);
}
else if (part.codeExecutionResult) {
console.debug('codeExecutionResult: %s\n', part.codeExecutionResult.output);
}
else if (part.inlineData && typeof part.inlineData.data === 'string') {
combinedData += atob(part.inlineData.data);
}
}
}
}
// Convert the base64-encoded string of bytes into a Buffer.
const buffer = Buffer.from(combinedData, 'binary');
// The buffer contains raw bytes. For 16-bit audio, we need to interpret every 2 bytes as a single sample.
const intArray = new Int16Array(buffer.buffer, buffer.byteOffset, buffer.byteLength / Int16Array.BYTES_PER_ELEMENT);
const wf = new WaveFile();
// The API returns 16-bit PCM audio at a 24kHz sample rate.
wf.fromScratch(1, 24000, '16', intArray);
fs.writeFileSync('audio.wav', wf.toBuffer());
session.close();
}
async function main() {
await live().catch((e) => console.error('got error', e));
}
main();
Kombinimi i mjeteve të shumta
Mund të kombinoni mjete të shumta brenda Live API, duke rritur edhe më shumë aftësitë e aplikacionit tuaj:
Python
prompt = """
Hey, I need you to do two things for me.
1. Use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
2. Then turn on the lights
Thanks!
"""
tools = [
{"google_search": {}},
{"function_declarations": [turn_on_the_lights, turn_off_the_lights]},
]
config = {"response_modalities": ["AUDIO"], "tools": tools}
# ... remaining model call
JavaScript
const prompt = `Hey, I need you to do two things for me.
1. Use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
2. Then turn on the lights
Thanks!
`
const tools = [
{ googleSearch: {} },
{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }
]
const config = {
responseModalities: [Modality.AUDIO],
tools: tools
}
// ... remaining model call
Çfarë vjen më pas
- Shikoni më shumë shembuj të përdorimit të mjeteve me Live API në librin e gatimit të përdorimit të mjeteve .
- Merrni historinë e plotë mbi veçoritë dhe konfigurimet nga udhëzuesi i Aftësive të API-t Live .