التوافق مع OpenAI

يمكن الوصول إلى نماذج Gemini باستخدام مكتبات OpenAI (Python وTypeScript / Javascript) بالإضافة إلى REST API، وذلك من خلال تعديل ثلاثة أسطر من الرمز البرمجي واستخدام مفتاح Gemini API. إذا لم تكن تستخدم مكتبات OpenAI، ننصحك بطلب Gemini API مباشرةً.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-2.5-flash",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)

print(response.choices[0].message)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});

console.log(response.choices[0].message);

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ]
    }'

ما الذي تغيّر؟ ثلاثة أسطر فقط!

  • استبدِل api_key="GEMINI_API_KEY" بـ "GEMINI_API_KEY"، وهو مفتاح Gemini API الفعلي الذي يمكنك الحصول عليه في Google AI Studio.

  • base_url="https://generativelanguage.googleapis.com/v1beta/openai/": يطلب هذا الرمز من مكتبة OpenAI إرسال الطلبات إلى نقطة نهاية Gemini API بدلاً من عنوان URL التلقائي.

  • model="gemini-2.5-flash": اختيار نموذج Gemini متوافق

جارٍ التفكير

تم تدريب نماذج Gemini 3 و2.5 على التفكير في المشاكل المعقّدة، ما يؤدي إلى تحسّن كبير في الاستدلال. تتضمّن Gemini API مَعلَمات التفكير التي تتيح التحكّم بدقة في مقدار التفكير الذي سيقوم به النموذج.

يستخدم Gemini 3 مستويَي التفكير "low" و"high"، بينما تستخدم نماذج Gemini 2.5 ميزانيات تفكير دقيقة. ويتم ربط هذه المقاييس بجهود OpenAI في مجال الاستدلال على النحو التالي:

reasoning_effort (OpenAI) thinking_level (Gemini 3) thinking_budget (‫Gemini 2.5)
minimal low 1,024
low low 1,024
medium high 8,192
high high 24,576

في حال عدم تحديد reasoning_effort، يستخدم Gemini المستوى أو الميزانية التلقائية للنموذج.

إذا أردت إيقاف التفكير، يمكنك ضبط reasoning_effort على "none" لطُرز 2.5. لا يمكن إيقاف ميزة "الاستنتاج" في نماذج Gemini 2.5 Pro أو 3.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-2.5-flash",
    reasoning_effort="low",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {
            "role": "user",
            "content": "Explain to me how AI works"
        }
    ]
)

print(response.choices[0].message)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-2.5-flash",
    reasoning_effort: "low",
    messages: [
        { role: "system", content: "You are a helpful assistant." },
        {
            role: "user",
            content: "Explain to me how AI works",
        },
    ],
});

console.log(response.choices[0].message);

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
    "reasoning_effort": "low",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
      ]
    }'

تنتج نماذج Gemini المفكّرة أيضًا ملخّصات الأفكار. يمكنك استخدام الحقل extra_body لتضمين حقول Gemini في طلبك.

يُرجى العِلم أنّ الدالتَين reasoning_effort وthinking_level/thinking_budget تتداخلان في الوظائف، لذا لا يمكن استخدامهما في الوقت نفسه.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
    model="gemini-2.5-flash",
    messages=[{"role": "user", "content": "Explain to me how AI works"}],
    extra_body={
      'extra_body': {
        "google": {
          "thinking_config": {
            "thinking_budget": "low",
            "include_thoughts": True
          }
        }
      }
    }
)

print(response.choices[0].message)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

const response = await openai.chat.completions.create({
    model: "gemini-2.5-flash",
    messages: [{role: "user", content: "Explain to me how AI works",}],
    extra_body: {
      "google": {
        "thinking_config": {
          "thinking_budget": "low",
          "include_thoughts": true
        }
      }
    }
});

console.log(response.choices[0].message);

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.5-flash",
      "messages": [{"role": "user", "content": "Explain to me how AI works"}],
      "extra_body": {
        "google": {
           "thinking_config": {
             "include_thoughts": true
           }
        }
      }
    }'

يتوافق Gemini 3 مع OpenAI في ما يتعلق بتوقيعات الأفكار في واجهات برمجة التطبيقات الخاصة بإكمال المحادثات. يمكنك الاطّلاع على المثال الكامل في صفحة توقيعات الأفكار.

البث

تتيح Gemini API بث الردود.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ],
  stream=True
)

for chunk in response:
    print(chunk.choices[0].delta)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const completion = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
      {"role": "system", "content": "You are a helpful assistant."},
      {"role": "user", "content": "Hello!"}
    ],
    stream: true,
  });

  for await (const chunk of completion) {
    console.log(chunk.choices[0].delta.content);
  }
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "model": "gemini-2.0-flash",
    "messages": [
        {"role": "user", "content": "Explain to me how AI works"}
    ],
    "stream": true
  }'

استدعاء الدالة

تسهّل ميزة "استدعاء الدوال" الحصول على نواتج بيانات منظَّمة من النماذج التوليدية، وهي متاحة في Gemini API.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

tools = [
  {
    "type": "function",
    "function": {
      "name": "get_weather",
      "description": "Get the weather in a given location",
      "parameters": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. Chicago, IL",
          },
          "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
      },
    }
  }
]

messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=messages,
  tools=tools,
  tool_choice="auto"
)

print(response)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}];
  const tools = [
      {
        "type": "function",
        "function": {
          "name": "get_weather",
          "description": "Get the weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. Chicago, IL",
              },
              "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
            },
            "required": ["location"],
          },
        }
      }
  ];

  const response = await openai.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: messages,
    tools: tools,
    tool_choice: "auto",
  });

  console.log(response);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
  "model": "gemini-2.0-flash",
  "messages": [
    {
      "role": "user",
      "content": "What'\''s the weather like in Chicago today?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. Chicago, IL"
            },
            "unit": {
              "type": "string",
              "enum": ["celsius", "fahrenheit"]
            }
          },
          "required": ["location"]
        }
      }
    }
  ],
  "tool_choice": "auto"
}'

فهم الصور

تتضمّن نماذج Gemini بشكل أساسي إمكانات متعدّدة الوسائط، وتوفّر أفضل أداء في العديد من مهام الرؤية الشائعة.

Python

import base64
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

# Function to encode the image
def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')

# Getting the base64 string
base64_image = encode_image("Path/to/agi/image.jpeg")

response = client.chat.completions.create(
  model="gemini-2.0-flash",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url":  f"data:image/jpeg;base64,{base64_image}"
          },
        },
      ],
    }
  ],
)

print(response.choices[0])

JavaScript

import OpenAI from "openai";
import fs from 'fs/promises';

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function encodeImage(imagePath) {
  try {
    const imageBuffer = await fs.readFile(imagePath);
    return imageBuffer.toString('base64');
  } catch (error) {
    console.error("Error encoding image:", error);
    return null;
  }
}

async function main() {
  const imagePath = "Path/to/agi/image.jpeg";
  const base64Image = await encodeImage(imagePath);

  const messages = [
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?",
        },
        {
          "type": "image_url",
          "image_url": {
            "url": `data:image/jpeg;base64,${base64Image}`
          },
        },
      ],
    }
  ];

  try {
    const response = await openai.chat.completions.create({
      model: "gemini-2.0-flash",
      messages: messages,
    });

    console.log(response.choices[0]);
  } catch (error) {
    console.error("Error calling Gemini API:", error);
  }
}

main();

REST

bash -c '
  base64_image=$(base64 -i "Path/to/agi/image.jpeg");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-2.0-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"What is in this image?\" },
            {
              \"type\": \"image_url\",
              \"image_url\": { \"url\": \"data:image/jpeg;base64,${base64_image}\" }
            }
          ]
        }
      ]
    }"
'

إنشاء صورة

إنشاء صورة:

Python

import base64
from openai import OpenAI
from PIL import Image
from io import BytesIO

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
)

response = client.images.generate(
    model="imagen-3.0-generate-002",
    prompt="a portrait of a sheepadoodle wearing a cape",
    response_format='b64_json',
    n=1,
)

for image_data in response.data:
  image = Image.open(BytesIO(base64.b64decode(image_data.b64_json)))
  image.show()

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

async function main() {
  const image = await openai.images.generate(
    {
      model: "imagen-3.0-generate-002",
      prompt: "a portrait of a sheepadoodle wearing a cape",
      response_format: "b64_json",
      n: 1,
    }
  );

  console.log(image.data);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/images/generations" \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer GEMINI_API_KEY" \
  -d '{
        "model": "imagen-3.0-generate-002",
        "prompt": "a portrait of a sheepadoodle wearing a cape",
        "response_format": "b64_json",
        "n": 1,
      }'

فهم الصوت

تحليل إدخال الصوت:

Python

import base64
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

with open("/path/to/your/audio/file.wav", "rb") as audio_file:
  base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')

response = client.chat.completions.create(
    model="gemini-2.0-flash",
    messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "Transcribe this audio",
        },
        {
              "type": "input_audio",
              "input_audio": {
                "data": base64_audio,
                "format": "wav"
          }
        }
      ],
    }
  ],
)

print(response.choices[0].message.content)

JavaScript

import fs from "fs";
import OpenAI from "openai";

const client = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

const audioFile = fs.readFileSync("/path/to/your/audio/file.wav");
const base64Audio = Buffer.from(audioFile).toString("base64");

async function main() {
  const response = await client.chat.completions.create({
    model: "gemini-2.0-flash",
    messages: [
      {
        role: "user",
        content: [
          {
            type: "text",
            text: "Transcribe this audio",
          },
          {
            type: "input_audio",
            input_audio: {
              data: base64Audio,
              format: "wav",
            },
          },
        ],
      },
    ],
  });

  console.log(response.choices[0].message.content);
}

main();

REST

bash -c '
  base64_audio=$(base64 -i "/path/to/your/audio/file.wav");
  curl "https://generativelanguage.googleapis.com/v1beta/openai/chat/completions" \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer GEMINI_API_KEY" \
    -d "{
      \"model\": \"gemini-2.0-flash\",
      \"messages\": [
        {
          \"role\": \"user\",
          \"content\": [
            { \"type\": \"text\", \"text\": \"Transcribe this audio file.\" },
            {
              \"type\": \"input_audio\",
              \"input_audio\": {
                \"data\": \"${base64_audio}\",
                \"format\": \"wav\"
              }
            }
          ]
        }
      ]
    }"
'

الناتج المنظَّم

يمكن لنماذج Gemini عرض كائنات JSON بأي بنية تحدّدها.

Python

from pydantic import BaseModel
from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

completion = client.beta.chat.completions.parse(
    model="gemini-2.0-flash",
    messages=[
        {"role": "system", "content": "Extract the event information."},
        {"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
    ],
    response_format=CalendarEvent,
)

print(completion.choices[0].message.parsed)

JavaScript

import OpenAI from "openai";
import { zodResponseFormat } from "openai/helpers/zod";
import { z } from "zod";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai"
});

const CalendarEvent = z.object({
  name: z.string(),
  date: z.string(),
  participants: z.array(z.string()),
});

const completion = await openai.chat.completions.parse({
  model: "gemini-2.0-flash",
  messages: [
    { role: "system", content: "Extract the event information." },
    { role: "user", content: "John and Susan are going to an AI conference on Friday" },
  ],
  response_format: zodResponseFormat(CalendarEvent, "event"),
});

const event = completion.choices[0].message.parsed;
console.log(event);

التضمينات

تقيس تضمينات النص مدى صلة سلاسل النص ببعضها، ويمكن إنشاؤها باستخدام Gemini API.

Python

from openai import OpenAI

client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

response = client.embeddings.create(
    input="Your text string goes here",
    model="gemini-embedding-001"
)

print(response.data[0].embedding)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
    apiKey: "GEMINI_API_KEY",
    baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/"
});

async function main() {
  const embedding = await openai.embeddings.create({
    model: "gemini-embedding-001",
    input: "Your text string goes here",
  });

  console.log(embedding);
}

main();

REST

curl "https://generativelanguage.googleapis.com/v1beta/openai/embeddings" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer GEMINI_API_KEY" \
-d '{
    "input": "Your text string goes here",
    "model": "gemini-embedding-001"
  }'

Batch API

يمكنك إنشاء مهام مجمّعة وإرسالها والاطّلاع على حالتها باستخدام مكتبة OpenAI.

عليك إعداد ملف JSONL بتنسيق الإدخال في OpenAI. على سبيل المثال:

{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gemini-2.5-flash", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}

تتيح ميزة "المعالجة المجمّعة" المتوافقة مع OpenAI إنشاء معالجة مجمّعة، وتتبُّع حالة المهمة، وعرض نتائج المعالجة المجمّعة.

لا تتوفّر حاليًا إمكانية التحميل والتنزيل. بدلاً من ذلك، يستخدم المثال التالي عميل genai لتحميل الملفات وتنزيلها، كما هو الحال عند استخدام Batch API من Gemini.

Python

from openai import OpenAI

# Regular genai client for uploads & downloads
from google import genai
client = genai.Client()

openai_client = OpenAI(
    api_key="GEMINI_API_KEY",
    base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

# Upload the JSONL file in OpenAI input format, using regular genai SDK
uploaded_file = client.files.upload(
    file='my-batch-requests.jsonl',
    config=types.UploadFileConfig(display_name='my-batch-requests', mime_type='jsonl')
)

# Create batch
batch = openai_client.batches.create(
    input_file_id=batch_input_file_id,
    endpoint="/v1/chat/completions",
    completion_window="24h"
)

# Wait for batch to finish (up to 24h)
while True:
    batch = client.batches.retrieve(batch.id)
    if batch.status in ('completed', 'failed', 'cancelled', 'expired'):
        break
    print(f"Batch not finished. Current state: {batch.status}. Waiting 30 seconds...")
    time.sleep(30)
print(f"Batch finished: {batch}")

# Download results in OpenAI output format, using regular genai SDK
file_content = genai_client.files.download(file=batch.output_file_id).decode('utf-8')

# See batch_output JSONL in OpenAI output format
for line in file_content.splitlines():
    print(line)    

تتيح حزمة OpenAI SDK أيضًا إنشاء تضمينات باستخدام Batch API. لإجراء ذلك، استبدِل الحقل endpoint الخاص بالطريقة create بنقطة نهاية خاصة بالتضمينات، بالإضافة إلى المفتاحين url وmodel في ملف JSONL:

# JSONL file using embeddings model and endpoint
# {"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "ggemini-embedding-001", "messages": [{"role": "user", "content": "Tell me a one-sentence joke."}]}}
# {"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "gemini-embedding-001", "messages": [{"role": "user", "content": "Why is the sky blue?"}]}}

# ...

# Create batch step with embeddings endpoint
batch = openai_client.batches.create(
    input_file_id=batch_input_file_id,
    endpoint="/v1/embeddings",
    completion_window="24h"
)

يمكنك الاطّلاع على القسم إنشاء عمليات تضمين مجمّعة في دليل استخدام OpenAI المتوافق للحصول على مثال كامل.

extra_body

تتوفّر في Gemini عدة ميزات غير متاحة في نماذج OpenAI، ولكن يمكن تفعيلها باستخدام الحقل extra_body.

ميزات extra_body

cached_content يتوافق مع GenerateContentRequest.cached_content في Gemini.
thinking_config يتوافق مع ThinkingConfig في Gemini.

cached_content

في ما يلي مثال على استخدام extra_body لضبط cached_content:

Python

from openai import OpenAI

client = OpenAI(
    api_key=MY_API_KEY,
    base_url="https://generativelanguage.googleapis.com/v1beta/"
)

stream = client.chat.completions.create(
    model="gemini-2.5-pro",
    n=1,
    messages=[
        {
            "role": "user",
            "content": "Summarize the video"
        }
    ],
    stream=True,
    stream_options={'include_usage': True},
    extra_body={
        'extra_body':
        {
            'google': {
              'cached_content': "cachedContents/0000aaaa1111bbbb2222cccc3333dddd4444eeee"
          }
        }
    }
)

for chunk in stream:
    print(chunk)
    print(chunk.usage.to_dict())

عرض النماذج

للحصول على قائمة بنماذج Gemini المتوفّرة، اتّبِع الخطوات التالية:

Python

from openai import OpenAI

client = OpenAI(
  api_key="GEMINI_API_KEY",
  base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

models = client.models.list()
for model in models:
  print(model.id)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

async function main() {
  const list = await openai.models.list();

  for await (const model of list) {
    console.log(model);
  }
}
main();

REST

curl https://generativelanguage.googleapis.com/v1beta/openai/models \
-H "Authorization: Bearer GEMINI_API_KEY"

استرداد نموذج

استرداد نموذج Gemini:

Python

from openai import OpenAI

client = OpenAI(
  api_key="GEMINI_API_KEY",
  base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)

model = client.models.retrieve("gemini-2.0-flash")
print(model.id)

JavaScript

import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: "GEMINI_API_KEY",
  baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/",
});

async function main() {
  const model = await openai.models.retrieve("gemini-2.0-flash");
  console.log(model.id);
}

main();

REST

curl https://generativelanguage.googleapis.com/v1beta/openai/models/gemini-2.0-flash \
-H "Authorization: Bearer GEMINI_API_KEY"

القيود الحالية

لا يزال دعم مكتبات OpenAI في مرحلة تجريبية أثناء توسيع نطاق توفّر الميزات.

إذا كانت لديك أسئلة حول المَعلمات المتوافقة أو الميزات القادمة أو واجهت أي مشاكل في بدء استخدام Gemini، يمكنك الانضمام إلى منتدى المطوّرين.

الخطوات التالية

جرِّب OpenAI Compatibility Colab للاطّلاع على أمثلة أكثر تفصيلاً.