Saídas estruturadas

É possível configurar os modelos do Gemini para gerar respostas que sigam um esquema JSON fornecido. Isso garante resultados previsíveis e seguros de tipos, além de simplificar a extração de dados estruturados de texto não estruturado.

Usar respostas estruturadas é ideal para:

  • Extração de dados:extrai informações específicas, como nomes e datas, de um texto.
  • Classificação estruturada:classifique textos em categorias predefinidas.
  • Fluxos de trabalho com agentes:geram entradas estruturadas para ferramentas ou APIs.

Além de oferecer suporte ao esquema JSON na API REST, os SDKs da GenAI do Google facilitam a definição de esquemas usando Pydantic (Python) e Zod (JavaScript).

Este exemplo demonstra como extrair dados estruturados de texto usando tipos básicos de esquema JSON, como object, array, string e integer.

Python

from google import genai
from pydantic import BaseModel, Field
from typing import List, Optional

class Ingredient(BaseModel):
    name: str = Field(description="Name of the ingredient.")
    quantity: str = Field(description="Quantity of the ingredient, including units.")

class Recipe(BaseModel):
    recipe_name: str = Field(description="The name of the recipe.")
    prep_time_minutes: Optional[int] = Field(description="Optional time in minutes to prepare the recipe.")
    ingredients: List[Ingredient]
    instructions: List[str]

client = genai.Client()

prompt = """
Please extract the recipe from the following text.
The user wants to make delicious chocolate chip cookies.
They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
For the best part, they'll need 2 cups of semisweet chocolate chips.
First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
onto ungreased baking sheets and bake for 9 to 11 minutes.
"""

response = client.models.generate_content(
    model="gemini-3-flash-preview",
    contents=prompt,
    config={
        "response_mime_type": "application/json",
        "response_json_schema": Recipe.model_json_schema(),
    },
)

recipe = Recipe.model_validate_json(response.text)
print(recipe)

JavaScript

import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";

const ingredientSchema = z.object({
  name: z.string().describe("Name of the ingredient."),
  quantity: z.string().describe("Quantity of the ingredient, including units."),
});

const recipeSchema = z.object({
  recipe_name: z.string().describe("The name of the recipe."),
  prep_time_minutes: z.number().optional().describe("Optional time in minutes to prepare the recipe."),
  ingredients: z.array(ingredientSchema),
  instructions: z.array(z.string()),
});

const ai = new GoogleGenAI({});

const prompt = `
Please extract the recipe from the following text.
The user wants to make delicious chocolate chip cookies.
They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
For the best part, they'll need 2 cups of semisweet chocolate chips.
First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
onto ungreased baking sheets and bake for 9 to 11 minutes.
`;

const response = await ai.models.generateContent({
  model: "gemini-3-flash-preview",
  contents: prompt,
  config: {
    responseMimeType: "application/json",
    responseJsonSchema: zodToJsonSchema(recipeSchema),
  },
});

const recipe = recipeSchema.parse(JSON.parse(response.text));
console.log(recipe);

Go

package main

import (
    "context"
    "fmt"
    "log"

    "google.golang.org/genai"
)

func main() {
    ctx := context.Background()
    client, err := genai.NewClient(ctx, nil)
    if err != nil {
        log.Fatal(err)
    }

    prompt := `
  Please extract the recipe from the following text.
  The user wants to make delicious chocolate chip cookies.
  They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
  1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
  3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
  For the best part, they'll need 2 cups of semisweet chocolate chips.
  First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
  baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
  until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
  ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
  onto ungreased baking sheets and bake for 9 to 11 minutes.
  `
    config := &genai.GenerateContentConfig{
        ResponseMIMEType: "application/json",
        ResponseJsonSchema: map[string]any{
            "type": "object",
            "properties": map[string]any{
                "recipe_name": map[string]any{
                    "type":        "string",
                    "description": "The name of the recipe.",
                },
                "prep_time_minutes": map[string]any{
                    "type":        "integer",
                    "description": "Optional time in minutes to prepare the recipe.",
                },
                "ingredients": map[string]any{
                    "type": "array",
                    "items": map[string]any{
                        "type": "object",
                        "properties": map[string]any{
                            "name": map[string]any{
                                "type":        "string",
                                "description": "Name of the ingredient.",
                            },
                            "quantity": map[string]any{
                                "type":        "string",
                                "description": "Quantity of the ingredient, including units.",
                            },
                        },
                        "required": []string{"name", "quantity"},
                    },
                },
                "instructions": map[string]any{
                    "type":  "array",
                    "items": map[string]any{"type": "string"},
                },
            },
            "required": []string{"recipe_name", "ingredients", "instructions"},
        },
    }

    result, err := client.Models.GenerateContent(
        ctx,
        "gemini-3-flash-preview",
        genai.Text(prompt),
        config,
    )
    if err != nil {
        log.Fatal(err)
    }
    fmt.Println(result.Text())
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
    -H "x-goog-api-key: $GEMINI_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          { "text": "Please extract the recipe from the following text.\nThe user wants to make delicious chocolate chip cookies.\nThey need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,\n1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,\n3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.\nFor the best part, they will need 2 cups of semisweet chocolate chips.\nFirst, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,\nbaking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar\nuntil light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry\ningredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons\nonto ungreased baking sheets and bake for 9 to 11 minutes." }
        ]
      }],
      "generationConfig": {
        "responseMimeType": "application/json",
        "responseJsonSchema": {
          "type": "object",
          "properties": {
            "recipe_name": {
              "type": "string",
              "description": "The name of the recipe."
            },
            "prep_time_minutes": {
                "type": "integer",
                "description": "Optional time in minutes to prepare the recipe."
            },
            "ingredients": {
              "type": "array",
              "items": {
                "type": "object",
                "properties": {
                  "name": { "type": "string", "description": "Name of the ingredient."},
                  "quantity": { "type": "string", "description": "Quantity of the ingredient, including units."}
                },
                "required": ["name", "quantity"]
              }
            },
            "instructions": {
              "type": "array",
              "items": { "type": "string" }
            }
          },
          "required": ["recipe_name", "ingredients", "instructions"]
        }
      }
    }'

Exemplo de resposta:

{
  "recipe_name": "Delicious Chocolate Chip Cookies",
  "ingredients": [
    {
      "name": "all-purpose flour",
      "quantity": "2 and 1/4 cups"
    },
    {
      "name": "baking soda",
      "quantity": "1 teaspoon"
    },
    {
      "name": "salt",
      "quantity": "1 teaspoon"
    },
    {
      "name": "unsalted butter (softened)",
      "quantity": "1 cup"
    },
    {
      "name": "granulated sugar",
      "quantity": "3/4 cup"
    },
    {
      "name": "packed brown sugar",
      "quantity": "3/4 cup"
    },
    {
      "name": "vanilla extract",
      "quantity": "1 teaspoon"
    },
    {
      "name": "large eggs",
      "quantity": "2"
    },
    {
      "name": "semisweet chocolate chips",
      "quantity": "2 cups"
    }
  ],
  "instructions": [
    "Preheat the oven to 375°F (190°C).",
    "In a small bowl, whisk together the flour, baking soda, and salt.",
    "In a large bowl, cream together the butter, granulated sugar, and brown sugar until light and fluffy.",
    "Beat in the vanilla and eggs, one at a time.",
    "Gradually beat in the dry ingredients until just combined.",
    "Stir in the chocolate chips.",
    "Drop by rounded tablespoons onto ungreased baking sheets and bake for 9 to 11 minutes."
  ]
}

Streaming

Você pode transmitir saídas estruturadas, o que permite começar a processar a resposta à medida que ela é gerada, sem precisar esperar que toda a saída seja concluída. Isso pode melhorar o desempenho percebido do aplicativo.

Os blocos transmitidos serão strings JSON parciais válidas, que podem ser concatenadas para formar o objeto JSON final e completo.

Python

from google import genai
from pydantic import BaseModel, Field
from typing import Literal

class Feedback(BaseModel):
    sentiment: Literal["positive", "neutral", "negative"]
    summary: str

client = genai.Client()
prompt = "The new UI is incredibly intuitive and visually appealing. Great job. Add a very long summary to test streaming!"

response_stream = client.models.generate_content_stream(
    model="gemini-3-flash-preview",
    contents=prompt,
    config={
        "response_mime_type": "application/json",
        "response_json_schema": Feedback.model_json_schema(),
    },
)

for chunk in response_stream:
    print(chunk.candidates[0].content.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";

const ai = new GoogleGenAI({});
const prompt = "The new UI is incredibly intuitive and visually appealing. Great job! Add a very long summary to test streaming!";

const feedbackSchema = z.object({
  sentiment: z.enum(["positive", "neutral", "negative"]),
  summary: z.string(),
});

const stream = await ai.models.generateContentStream({
  model: "gemini-3-flash-preview",
  contents: prompt,
  config: {
    responseMimeType: "application/json",
    responseJsonSchema: zodToJsonSchema(feedbackSchema),
  },
});

for await (const chunk of stream) {
  console.log(chunk.candidates[0].content.parts[0].text)
}

Saídas estruturadas com ferramentas

O Gemini 3 permite combinar saídas estruturadas com ferramentas integradas, incluindo Embasamento com a Pesquisa Google, Contexto de URL, Execução de código e Pesquisa de arquivos.

Python

from google import genai
from pydantic import BaseModel, Field
from typing import List

class MatchResult(BaseModel):
    winner: str = Field(description="The name of the winner.")
    final_match_score: str = Field(description="The final match score.")
    scorers: List[str] = Field(description="The name of the scorer.")

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-preview",
    contents="Search for all details for the latest Euro.",
    config={
        "tools": [
            {"google_search": {}},
            {"url_context": {}}
        ],
        "response_mime_type": "application/json",
        "response_json_schema": MatchResult.model_json_schema(),
    },  
)

result = MatchResult.model_validate_json(response.text)
print(result)

JavaScript

import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";

const ai = new GoogleGenAI({});

const matchSchema = z.object({
  winner: z.string().describe("The name of the winner."),
  final_match_score: z.string().describe("The final score."),
  scorers: z.array(z.string()).describe("The name of the scorer.")
});

async function run() {
  const response = await ai.models.generateContent({
    model: "gemini-3-pro-preview",
    contents: "Search for all details for the latest Euro.",
    config: {
      tools: [
        { googleSearch: {} },
        { urlContext: {} }
      ],
      responseMimeType: "application/json",
      responseJsonSchema: zodToJsonSchema(matchSchema),
    },
  });

  const match = matchSchema.parse(JSON.parse(response.text));
  console.log(match);
}

run();

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-preview:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [{
      "parts": [{"text": "Search for all details for the latest Euro."}]
    }],
    "tools": [
      {"googleSearch": {}},
      {"urlContext": {}}
    ],
    "generationConfig": {
        "responseMimeType": "application/json",
        "responseJsonSchema": {
            "type": "object",
            "properties": {
                "winner": {"type": "string", "description": "The name of the winner."},
                "final_match_score": {"type": "string", "description": "The final score."},
                "scorers": {
                    "type": "array",
                    "items": {"type": "string"},
                    "description": "The name of the scorer."
                }
            },
            "required": ["winner", "final_match_score", "scorers"]
        }
    }
  }'

Suporte a esquemas JSON

Para gerar um objeto JSON, defina o response_mime_type na configuração de geração como application/json e forneça um response_json_schema. O esquema precisa ser um esquema JSON válido que descreve o formato de saída desejado.

Em seguida, o modelo vai gerar uma resposta que é uma string JSON sintaticamente válida e que corresponde ao esquema fornecido. Ao usar saídas estruturadas, o modelo vai produzir saídas na mesma ordem das chaves no esquema.

O modo de saída estruturada do Gemini é compatível com um subconjunto da especificação JSON Schema.

Os seguintes valores de type são aceitos:

  • string: para texto.
  • number: para números de ponto flutuante.
  • integer: para números inteiros.
  • boolean: para valores verdadeiro/falso.
  • object: para dados estruturados com pares de chave-valor.
  • array: para listas de itens.
  • null: para permitir que uma propriedade seja nula, inclua "null" na matriz de tipos (por exemplo, {"type": ["string", "null"]}).

Essas propriedades descritivas ajudam a orientar o modelo:

  • title: uma breve descrição de uma propriedade.
  • description: uma descrição mais longa e detalhada de uma propriedade.

Propriedades específicas do tipo

Para valores de object:

  • properties: um objeto em que cada chave é um nome de propriedade e cada valor é um esquema para essa propriedade.
  • required: uma matriz de strings que lista quais propriedades são obrigatórias.
  • additionalProperties: controla se as propriedades não listadas em properties são permitidas. Pode ser um booleano ou um esquema.

Para valores de string:

  • enum: lista um conjunto específico de strings possíveis para tarefas de classificação.
  • format: especifica uma sintaxe para a string, como date-time, date e time.

Para valores number e integer:

  • enum: lista um conjunto específico de valores numéricos possíveis.
  • minimum: o valor mínimo inclusivo.
  • maximum: o valor máximo inclusivo.

Para valores de array:

  • items: define o esquema de todos os itens na matriz.
  • prefixItems: define uma lista de esquemas para os primeiros N itens, permitindo estruturas semelhantes a tuplas.
  • minItems: o número mínimo de itens na matriz.
  • maxItems: o número máximo de itens na matriz.

Suporte a modelos

Os seguintes modelos são compatíveis com saída estruturada:

Modelo Saídas estruturadas
Pré-lançamento do Gemini 3 Pro ✔️
Pré-lançamento do Gemini 3 Flash ✔️
Gemini 2.5 Pro ✔️
Gemini 2.5 Flash ✔️
Gemini 2.5 Flash-Lite ✔️
Gemini 2.0 Flash ✔️*
Gemini 2.0 Flash-Lite ✔️*

* O Gemini 2.0 exige uma lista propertyOrdering explícita na entrada JSON para definir a estrutura preferida. Confira um exemplo neste manual.

Saídas estruturadas x chamada de função

As respostas estruturadas e a chamada de função usam esquemas JSON, mas têm finalidades diferentes:

Recurso Caso de uso principal
Saídas estruturadas Formatar a resposta final para o usuário. Use isso quando quiser que a resposta do modelo esteja em um formato específico (por exemplo, extrair dados de um documento para salvar em um banco de dados).
Chamada de função Tomar medidas durante a conversa. Use isso quando o modelo precisar pedir que você execute uma tarefa (por exemplo, "get current weather") antes de fornecer uma resposta final.

Práticas recomendadas

  • Descrições claras:use o campo description no esquema para dar instruções claras ao modelo sobre o que cada propriedade representa. Isso é essencial para orientar a saída do modelo.
  • Tipagem forte:use tipos específicos (integer, string, enum) sempre que possível. Se um parâmetro tiver um conjunto limitado de valores válidos, use um enum.
  • Engenharia de comando:deixe claro no comando o que você quer que o modelo faça. Por exemplo, "Extraia as seguintes informações do texto..." ou "Classifique este feedback de acordo com o esquema fornecido...".
  • Validação:embora a saída estruturada garanta um JSON sintaticamente correto, ela não garante que os valores estejam semanticamente corretos. Sempre valide a saída final no código do aplicativo antes de usá-la.
  • Tratamento de erros:implemente um tratamento de erros robusto no seu aplicativo para gerenciar de forma adequada casos em que a saída do modelo, embora esteja em conformidade com o esquema, não atenda aos requisitos da sua lógica de negócios.

Limitações

  • Subconjunto de esquema:nem todos os recursos da especificação do esquema JSON são compatíveis. O modelo ignora propriedades sem suporte.
  • Complexidade do esquema:a API pode rejeitar esquemas muito grandes ou profundamente aninhados. Se você encontrar erros, tente simplificar o esquema encurtando os nomes das propriedades, reduzindo o aninhamento ou limitando o número de restrições.