É possível configurar os modelos do Gemini para gerar respostas que sigam um esquema JSON fornecido. Isso garante resultados previsíveis e seguros de tipos, além de simplificar a extração de dados estruturados de texto não estruturado.
Usar respostas estruturadas é ideal para:
- Extração de dados:extrai informações específicas, como nomes e datas, de um texto.
- Classificação estruturada:classifique textos em categorias predefinidas.
- Fluxos de trabalho com agentes:geram entradas estruturadas para ferramentas ou APIs.
Além de oferecer suporte ao esquema JSON na API REST, os SDKs da GenAI do Google facilitam a definição de esquemas usando Pydantic (Python) e Zod (JavaScript).
Este exemplo demonstra como extrair dados estruturados de texto usando tipos básicos de esquema JSON, como object, array, string e integer.
Python
from google import genai
from pydantic import BaseModel, Field
from typing import List, Optional
class Ingredient(BaseModel):
name: str = Field(description="Name of the ingredient.")
quantity: str = Field(description="Quantity of the ingredient, including units.")
class Recipe(BaseModel):
recipe_name: str = Field(description="The name of the recipe.")
prep_time_minutes: Optional[int] = Field(description="Optional time in minutes to prepare the recipe.")
ingredients: List[Ingredient]
instructions: List[str]
client = genai.Client()
prompt = """
Please extract the recipe from the following text.
The user wants to make delicious chocolate chip cookies.
They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
For the best part, they'll need 2 cups of semisweet chocolate chips.
First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
onto ungreased baking sheets and bake for 9 to 11 minutes.
"""
response = client.models.generate_content(
model="gemini-3-flash-preview",
contents=prompt,
config={
"response_mime_type": "application/json",
"response_json_schema": Recipe.model_json_schema(),
},
)
recipe = Recipe.model_validate_json(response.text)
print(recipe)
JavaScript
import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";
const ingredientSchema = z.object({
name: z.string().describe("Name of the ingredient."),
quantity: z.string().describe("Quantity of the ingredient, including units."),
});
const recipeSchema = z.object({
recipe_name: z.string().describe("The name of the recipe."),
prep_time_minutes: z.number().optional().describe("Optional time in minutes to prepare the recipe."),
ingredients: z.array(ingredientSchema),
instructions: z.array(z.string()),
});
const ai = new GoogleGenAI({});
const prompt = `
Please extract the recipe from the following text.
The user wants to make delicious chocolate chip cookies.
They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
For the best part, they'll need 2 cups of semisweet chocolate chips.
First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
onto ungreased baking sheets and bake for 9 to 11 minutes.
`;
const response = await ai.models.generateContent({
model: "gemini-3-flash-preview",
contents: prompt,
config: {
responseMimeType: "application/json",
responseJsonSchema: zodToJsonSchema(recipeSchema),
},
});
const recipe = recipeSchema.parse(JSON.parse(response.text));
console.log(recipe);
Go
package main
import (
"context"
"fmt"
"log"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
prompt := `
Please extract the recipe from the following text.
The user wants to make delicious chocolate chip cookies.
They need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,
1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,
3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.
For the best part, they'll need 2 cups of semisweet chocolate chips.
First, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,
baking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar
until light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry
ingredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons
onto ungreased baking sheets and bake for 9 to 11 minutes.
`
config := &genai.GenerateContentConfig{
ResponseMIMEType: "application/json",
ResponseJsonSchema: map[string]any{
"type": "object",
"properties": map[string]any{
"recipe_name": map[string]any{
"type": "string",
"description": "The name of the recipe.",
},
"prep_time_minutes": map[string]any{
"type": "integer",
"description": "Optional time in minutes to prepare the recipe.",
},
"ingredients": map[string]any{
"type": "array",
"items": map[string]any{
"type": "object",
"properties": map[string]any{
"name": map[string]any{
"type": "string",
"description": "Name of the ingredient.",
},
"quantity": map[string]any{
"type": "string",
"description": "Quantity of the ingredient, including units.",
},
},
"required": []string{"name", "quantity"},
},
},
"instructions": map[string]any{
"type": "array",
"items": map[string]any{"type": "string"},
},
},
"required": []string{"recipe_name", "ingredients", "instructions"},
},
}
result, err := client.Models.GenerateContent(
ctx,
"gemini-3-flash-preview",
genai.Text(prompt),
config,
)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-flash-preview:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{ "text": "Please extract the recipe from the following text.\nThe user wants to make delicious chocolate chip cookies.\nThey need 2 and 1/4 cups of all-purpose flour, 1 teaspoon of baking soda,\n1 teaspoon of salt, 1 cup of unsalted butter (softened), 3/4 cup of granulated sugar,\n3/4 cup of packed brown sugar, 1 teaspoon of vanilla extract, and 2 large eggs.\nFor the best part, they will need 2 cups of semisweet chocolate chips.\nFirst, preheat the oven to 375°F (190°C). Then, in a small bowl, whisk together the flour,\nbaking soda, and salt. In a large bowl, cream together the butter, granulated sugar, and brown sugar\nuntil light and fluffy. Beat in the vanilla and eggs, one at a time. Gradually beat in the dry\ningredients until just combined. Finally, stir in the chocolate chips. Drop by rounded tablespoons\nonto ungreased baking sheets and bake for 9 to 11 minutes." }
]
}],
"generationConfig": {
"responseMimeType": "application/json",
"responseJsonSchema": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
"description": "The name of the recipe."
},
"prep_time_minutes": {
"type": "integer",
"description": "Optional time in minutes to prepare the recipe."
},
"ingredients": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": { "type": "string", "description": "Name of the ingredient."},
"quantity": { "type": "string", "description": "Quantity of the ingredient, including units."}
},
"required": ["name", "quantity"]
}
},
"instructions": {
"type": "array",
"items": { "type": "string" }
}
},
"required": ["recipe_name", "ingredients", "instructions"]
}
}
}'
Exemplo de resposta:
{
"recipe_name": "Delicious Chocolate Chip Cookies",
"ingredients": [
{
"name": "all-purpose flour",
"quantity": "2 and 1/4 cups"
},
{
"name": "baking soda",
"quantity": "1 teaspoon"
},
{
"name": "salt",
"quantity": "1 teaspoon"
},
{
"name": "unsalted butter (softened)",
"quantity": "1 cup"
},
{
"name": "granulated sugar",
"quantity": "3/4 cup"
},
{
"name": "packed brown sugar",
"quantity": "3/4 cup"
},
{
"name": "vanilla extract",
"quantity": "1 teaspoon"
},
{
"name": "large eggs",
"quantity": "2"
},
{
"name": "semisweet chocolate chips",
"quantity": "2 cups"
}
],
"instructions": [
"Preheat the oven to 375°F (190°C).",
"In a small bowl, whisk together the flour, baking soda, and salt.",
"In a large bowl, cream together the butter, granulated sugar, and brown sugar until light and fluffy.",
"Beat in the vanilla and eggs, one at a time.",
"Gradually beat in the dry ingredients until just combined.",
"Stir in the chocolate chips.",
"Drop by rounded tablespoons onto ungreased baking sheets and bake for 9 to 11 minutes."
]
}
Streaming
Você pode transmitir saídas estruturadas, o que permite começar a processar a resposta à medida que ela é gerada, sem precisar esperar que toda a saída seja concluída. Isso pode melhorar o desempenho percebido do aplicativo.
Os blocos transmitidos serão strings JSON parciais válidas, que podem ser concatenadas para formar o objeto JSON final e completo.
Python
from google import genai
from pydantic import BaseModel, Field
from typing import Literal
class Feedback(BaseModel):
sentiment: Literal["positive", "neutral", "negative"]
summary: str
client = genai.Client()
prompt = "The new UI is incredibly intuitive and visually appealing. Great job. Add a very long summary to test streaming!"
response_stream = client.models.generate_content_stream(
model="gemini-3-flash-preview",
contents=prompt,
config={
"response_mime_type": "application/json",
"response_json_schema": Feedback.model_json_schema(),
},
)
for chunk in response_stream:
print(chunk.candidates[0].content.parts[0].text)
JavaScript
import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";
const ai = new GoogleGenAI({});
const prompt = "The new UI is incredibly intuitive and visually appealing. Great job! Add a very long summary to test streaming!";
const feedbackSchema = z.object({
sentiment: z.enum(["positive", "neutral", "negative"]),
summary: z.string(),
});
const stream = await ai.models.generateContentStream({
model: "gemini-3-flash-preview",
contents: prompt,
config: {
responseMimeType: "application/json",
responseJsonSchema: zodToJsonSchema(feedbackSchema),
},
});
for await (const chunk of stream) {
console.log(chunk.candidates[0].content.parts[0].text)
}
Saídas estruturadas com ferramentas
O Gemini 3 permite combinar saídas estruturadas com ferramentas integradas, incluindo Embasamento com a Pesquisa Google, Contexto de URL, Execução de código e Pesquisa de arquivos.
Python
from google import genai
from pydantic import BaseModel, Field
from typing import List
class MatchResult(BaseModel):
winner: str = Field(description="The name of the winner.")
final_match_score: str = Field(description="The final match score.")
scorers: List[str] = Field(description="The name of the scorer.")
client = genai.Client()
response = client.models.generate_content(
model="gemini-3-pro-preview",
contents="Search for all details for the latest Euro.",
config={
"tools": [
{"google_search": {}},
{"url_context": {}}
],
"response_mime_type": "application/json",
"response_json_schema": MatchResult.model_json_schema(),
},
)
result = MatchResult.model_validate_json(response.text)
print(result)
JavaScript
import { GoogleGenAI } from "@google/genai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";
const ai = new GoogleGenAI({});
const matchSchema = z.object({
winner: z.string().describe("The name of the winner."),
final_match_score: z.string().describe("The final score."),
scorers: z.array(z.string()).describe("The name of the scorer.")
});
async function run() {
const response = await ai.models.generateContent({
model: "gemini-3-pro-preview",
contents: "Search for all details for the latest Euro.",
config: {
tools: [
{ googleSearch: {} },
{ urlContext: {} }
],
responseMimeType: "application/json",
responseJsonSchema: zodToJsonSchema(matchSchema),
},
});
const match = matchSchema.parse(JSON.parse(response.text));
console.log(match);
}
run();
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-3-pro-preview:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts": [{"text": "Search for all details for the latest Euro."}]
}],
"tools": [
{"googleSearch": {}},
{"urlContext": {}}
],
"generationConfig": {
"responseMimeType": "application/json",
"responseJsonSchema": {
"type": "object",
"properties": {
"winner": {"type": "string", "description": "The name of the winner."},
"final_match_score": {"type": "string", "description": "The final score."},
"scorers": {
"type": "array",
"items": {"type": "string"},
"description": "The name of the scorer."
}
},
"required": ["winner", "final_match_score", "scorers"]
}
}
}'
Suporte a esquemas JSON
Para gerar um objeto JSON, defina o response_mime_type na configuração de geração como application/json e forneça um response_json_schema. O esquema precisa ser um esquema JSON válido que descreve o formato de saída desejado.
Em seguida, o modelo vai gerar uma resposta que é uma string JSON sintaticamente válida e que corresponde ao esquema fornecido. Ao usar saídas estruturadas, o modelo vai produzir saídas na mesma ordem das chaves no esquema.
O modo de saída estruturada do Gemini é compatível com um subconjunto da especificação JSON Schema.
Os seguintes valores de type são aceitos:
string: para texto.number: para números de ponto flutuante.integer: para números inteiros.boolean: para valores verdadeiro/falso.object: para dados estruturados com pares de chave-valor.array: para listas de itens.null: para permitir que uma propriedade seja nula, inclua"null"na matriz de tipos (por exemplo,{"type": ["string", "null"]}).
Essas propriedades descritivas ajudam a orientar o modelo:
title: uma breve descrição de uma propriedade.description: uma descrição mais longa e detalhada de uma propriedade.
Propriedades específicas do tipo
Para valores de object:
properties: um objeto em que cada chave é um nome de propriedade e cada valor é um esquema para essa propriedade.required: uma matriz de strings que lista quais propriedades são obrigatórias.additionalProperties: controla se as propriedades não listadas empropertiessão permitidas. Pode ser um booleano ou um esquema.
Para valores de string:
enum: lista um conjunto específico de strings possíveis para tarefas de classificação.format: especifica uma sintaxe para a string, comodate-time,dateetime.
Para valores number e integer:
enum: lista um conjunto específico de valores numéricos possíveis.minimum: o valor mínimo inclusivo.maximum: o valor máximo inclusivo.
Para valores de array:
items: define o esquema de todos os itens na matriz.prefixItems: define uma lista de esquemas para os primeiros N itens, permitindo estruturas semelhantes a tuplas.minItems: o número mínimo de itens na matriz.maxItems: o número máximo de itens na matriz.
Suporte a modelos
Os seguintes modelos são compatíveis com saída estruturada:
| Modelo | Saídas estruturadas |
|---|---|
| Pré-lançamento do Gemini 3 Pro | ✔️ |
| Pré-lançamento do Gemini 3 Flash | ✔️ |
| Gemini 2.5 Pro | ✔️ |
| Gemini 2.5 Flash | ✔️ |
| Gemini 2.5 Flash-Lite | ✔️ |
| Gemini 2.0 Flash | ✔️* |
| Gemini 2.0 Flash-Lite | ✔️* |
* O Gemini 2.0 exige uma lista propertyOrdering explícita na entrada JSON para definir a estrutura preferida. Confira um exemplo neste manual.
Saídas estruturadas x chamada de função
As respostas estruturadas e a chamada de função usam esquemas JSON, mas têm finalidades diferentes:
| Recurso | Caso de uso principal |
|---|---|
| Saídas estruturadas | Formatar a resposta final para o usuário. Use isso quando quiser que a resposta do modelo esteja em um formato específico (por exemplo, extrair dados de um documento para salvar em um banco de dados). |
| Chamada de função | Tomar medidas durante a conversa. Use isso quando o modelo precisar pedir que você execute uma tarefa (por exemplo, "get current weather") antes de fornecer uma resposta final. |
Práticas recomendadas
- Descrições claras:use o campo
descriptionno esquema para dar instruções claras ao modelo sobre o que cada propriedade representa. Isso é essencial para orientar a saída do modelo. - Tipagem forte:use tipos específicos (
integer,string,enum) sempre que possível. Se um parâmetro tiver um conjunto limitado de valores válidos, use umenum. - Engenharia de comando:deixe claro no comando o que você quer que o modelo faça. Por exemplo, "Extraia as seguintes informações do texto..." ou "Classifique este feedback de acordo com o esquema fornecido...".
- Validação:embora a saída estruturada garanta um JSON sintaticamente correto, ela não garante que os valores estejam semanticamente corretos. Sempre valide a saída final no código do aplicativo antes de usá-la.
- Tratamento de erros:implemente um tratamento de erros robusto no seu aplicativo para gerenciar de forma adequada casos em que a saída do modelo, embora esteja em conformidade com o esquema, não atenda aos requisitos da sua lógica de negócios.
Limitações
- Subconjunto de esquema:nem todos os recursos da especificação do esquema JSON são compatíveis. O modelo ignora propriedades sem suporte.
- Complexidade do esquema:a API pode rejeitar esquemas muito grandes ou profundamente aninhados. Se você encontrar erros, tente simplificar o esquema encurtando os nomes das propriedades, reduzindo o aninhamento ou limitando o número de restrições.