إنشاء النص

يمكن لواجهة برمجة التطبيقات Gemini API إنشاء نصوص من مدخلات مختلفة، بما في ذلك النصوص والصور والفيديوهات والمقاطع الصوتية، وذلك باستخدام نماذج Gemini.

في ما يلي مثال أساسي يتضمّن إدخال نص واحد:

Python

from google import genai

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="How does AI work?"
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "How does AI work?",
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      genai.Text("Explain how AI works in a few words"),
      nil,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;

public class GenerateContentWithTextInput {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "How does AI work?", null);

  System.out.println(response.text());
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "How does AI work?"
          }
        ]
      }
    ]
  }'

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'How AI does work?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

التفكير مع Gemini 2.5

يتم تلقائيًا تفعيل ميزة "التفكير" في نماذج 2.5 Flash وPro لتحسين الجودة، ما قد يستغرق وقتًا أطول لتنفيذها ويزيد من استخدام الرموز المميزة.

عند استخدام الإصدار 2.5 من Flash، يمكنك إيقاف التفكير من خلال ضبط ميزانية التفكير على صفر.

لمزيد من التفاصيل، يُرجى الاطّلاع على دليل التفكير.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="How does AI work?",
    config=types.GenerateContentConfig(
        thinking_config=types.ThinkingConfig(thinking_budget=0) # Disables thinking
    ),
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "How does AI work?",
    config: {
      thinkingConfig: {
        thinkingBudget: 0, // Disables thinking
      },
    }
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      genai.Text("How does AI work?"),
      &genai.GenerateContentConfig{
        ThinkingConfig: &genai.ThinkingConfig{
            ThinkingBudget: int32(0), // Disables thinking
        },
      }
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.ThinkingConfig;

public class GenerateContentWithThinkingConfig {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentConfig config =
      GenerateContentConfig.builder()
          // Disables thinking
          .thinkingConfig(ThinkingConfig.builder().thinkingBudget(0))
          .build();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "How does AI work?", config);

  System.out.println(response.text());
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "How does AI work?"
          }
        ]
      }
    ],
    "generationConfig": {
      "thinkingConfig": {
        "thinkingBudget": 0
      }
    }
  }'

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'How AI does work?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

تعليمات النظام والإعدادات الأخرى

يمكنك توجيه سلوك نماذج Gemini باستخدام تعليمات النظام. لإجراء ذلك، مرِّر عنصر GenerateContentConfig.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    config=types.GenerateContentConfig(
        system_instruction="You are a cat. Your name is Neko."),
    contents="Hello there"
)

print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "Hello there",
    config: {
      systemInstruction: "You are a cat. Your name is Neko.",
    },
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  config := &genai.GenerateContentConfig{
      SystemInstruction: genai.NewContentFromText("You are a cat. Your name is Neko.", genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      genai.Text("Hello there"),
      config,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

public class GenerateContentWithSystemInstruction {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentConfig config =
      GenerateContentConfig.builder()
          .systemInstruction(
              Content.fromParts(Part.fromText("You are a cat. Your name is Neko.")))
          .build();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "Hello there", config);

  System.out.println(response.text());
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -d '{
    "system_instruction": {
      "parts": [
        {
          "text": "You are a cat. Your name is Neko."
        }
      ]
    },
    "contents": [
      {
        "parts": [
          {
            "text": "Hello there"
          }
        ]
      }
    ]
  }'

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const systemInstruction = {
    parts: [{
      text: 'You are a cat. Your name is Neko.'
    }]
  };

  const payload = {
    systemInstruction,
    contents: [
      {
        parts: [
          { text: 'Hello there' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

يتيح لك الكائن GenerateContentConfig أيضًا تجاهل مَعلمات الإنشاء التلقائية، مثل درجة الحرارة.

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=["Explain how AI works"],
    config=types.GenerateContentConfig(
        temperature=0.1
    )
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: "Explain how AI works",
    config: {
      temperature: 0.1,
    },
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  temp := float32(0.9)
  topP := float32(0.5)
  topK := float32(20.0)

  config := &genai.GenerateContentConfig{
    Temperature:       &temp,
    TopP:              &topP,
    TopK:              &topK,
    ResponseMIMEType:  "application/json",
  }

  result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.5-flash",
    genai.Text("What is the average size of a swallow?"),
    config,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;

public class GenerateContentWithConfig {
public static void main(String[] args) {

  Client client = new Client();

  GenerateContentConfig config = GenerateContentConfig.builder().temperature(0.1f).build();

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", "Explain how AI works", config);

  System.out.println(response.text());
}
}

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ],
    "generationConfig": {
      "stopSequences": [
        "Title"
      ],
      "temperature": 1.0,
      "topP": 0.8,
      "topK": 10
    }
  }'

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const generationConfig = {
    temperature: 1,
    topP: 0.95,
    topK: 40,
    responseMimeType: 'text/plain',
  };

  const payload = {
    generationConfig,
    contents: [
      {
        parts: [
          { text: 'Explain how AI works in a few words' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

يُرجى الرجوع إلى GenerateContentConfig في مرجع واجهة برمجة التطبيقات للحصول على قائمة كاملة بالمَعلمات القابلة للإعداد وأوصافها.

إدخالات متعددة الوسائط

تتيح Gemini API إدخال بيانات متعددة الوسائط، ما يسمح لك بدمج النص مع ملفات الوسائط. يوضّح المثال التالي كيفية تقديم صورة:

Python

from PIL import Image
from google import genai

client = genai.Client()

image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[image, "Tell me about this instrument"]
)
print(response.text)

JavaScript

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const image = await ai.files.upload({
    file: "/path/to/organ.png",
  });
  const response = await ai.models.generateContent({
    model: "gemini-2.5-flash",
    contents: [
      createUserContent([
        "Tell me about this instrument",
        createPartFromUri(image.uri, image.mimeType),
      ]),
    ],
  });
  console.log(response.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  imagePath := "/path/to/organ.jpg"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
      genai.NewPartFromText("Tell me about this instrument"),
      &genai.Part{
          InlineData: &genai.Blob{
              MIMEType: "image/jpeg",
              Data:     imgData,
          },
      },
  }

  contents := []*genai.Content{
      genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.5-flash",
      contents,
      nil,
  )

  fmt.Println(result.Text())
}

Java

import com.google.genai.Client;
import com.google.genai.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;

public class GenerateContentWithMultiModalInputs {
public static void main(String[] args) {

  Client client = new Client();

  Content content =
    Content.fromParts(
        Part.fromText("Tell me about this instrument"),
        Part.fromUri("/path/to/organ.jpg", "image/jpeg"));

  GenerateContentResponse response =
      client.models.generateContent("gemini-2.5-flash", content, null);

  System.out.println(response.text());
}
}

REST

# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"

# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT

cat > "$TEMP_JSON" << EOF
{
  "contents": [
    {
      "parts": [
        {
          "text": "Tell me about this instrument"
        },
        {
          "inline_data": {
            "mime_type": "image/jpeg",
            "data": "$(cat "$TEMP_B64")"
          }
        }
      ]
    }
  ]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d "@$TEMP_JSON"

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const imageUrl = 'http://image/url';
  const image = getImageData(imageUrl);
  const payload = {
    contents: [
      {
        parts: [
          { image },
          { text: 'Tell me about this instrument' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

function getImageData(url) {
  const blob = UrlFetchApp.fetch(url).getBlob();

  return {
    mimeType: blob.getContentType(),
    data: Utilities.base64Encode(blob.getBytes())
  };
}

للاطّلاع على طرق بديلة لتوفير الصور ومعالجة أكثر تقدّمًا للصور، يُرجى الاطّلاع على دليل فهم الصور. تتيح واجهة برمجة التطبيقات أيضًا إدخال المستندات والفيديوهات والملفات الصوتية وفهمها.

عرض الردود تدريجيًا

تعرض النماذج تلقائيًا ردًا بعد اكتمال عملية الإنشاء بأكملها.

للحصول على تفاعلات أكثر سلاسة، استخدِم البث لتلقّي مثيلات GenerateContentResponse بشكل تدريجي أثناء إنشائها.

Python

from google import genai

client = genai.Client()

response = client.models.generate_content_stream(
    model="gemini-2.5-flash",
    contents=["Explain how AI works"]
)
for chunk in response:
    print(chunk.text, end="")

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const response = await ai.models.generateContentStream({
    model: "gemini-2.5-flash",
    contents: "Explain how AI works",
  });

  for await (const chunk of response) {
    console.log(chunk.text);
  }
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  stream := client.Models.GenerateContentStream(
      ctx,
      "gemini-2.5-flash",
      genai.Text("Write a story about a magic backpack."),
      nil,
  )

  for chunk, _ := range stream {
      part := chunk.Candidates[0].Content.Parts[0]
      fmt.Print(part.Text)
  }
}

Java

import com.google.genai.Client;
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;

public class GenerateContentStream {
public static void main(String[] args) {

  Client client = new Client();

  ResponseStream<GenerateContentResponse> responseStream =
    client.models.generateContentStream(
        "gemini-2.5-flash", "Write a story about a magic backpack.", null);

  for (GenerateContentResponse res : responseStream) {
    System.out.print(res.text());
  }

  // To save resources and avoid connection leaks, it is recommended to close the response
  // stream after consumption (or using try block to get the response stream).
  responseStream.close();
}
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent?alt=sse" \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  --no-buffer \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ]
  }'

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'Explain how AI works' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

المحادثات المتعددة الأدوار (Chat)

توفر حِزم SDK وظائف لجمع جولات متعدّدة من الطلبات والاستجابات في محادثة، ما يمنحك طريقة سهلة لتتبُّع سجلّ المحادثات.

Python

from google import genai

client = genai.Client()
chat = client.chats.create(model="gemini-2.5-flash")

response = chat.send_message("I have 2 dogs in my house.")
print(response.text)

response = chat.send_message("How many paws are in my house?")
print(response.text)

for message in chat.get_history():
    print(f'role - {message.role}',end=": ")
    print(message.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.5-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const response1 = await chat.sendMessage({
    message: "I have 2 dogs in my house.",
  });
  console.log("Chat response 1:", response1.text);

  const response2 = await chat.sendMessage({
    message: "How many paws are in my house?",
  });
  console.log("Chat response 2:", response2.text);
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  history := []*genai.Content{
      genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
      genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
  }

  chat, _ := client.Chats.Create(ctx, "gemini-2.5-flash", nil, history)
  res, _ := chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})

  if len(res.Candidates) > 0 {
      fmt.Println(res.Candidates[0].Content.Parts[0].Text)
  }
}

Java

import com.google.genai.Chat;
import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;

public class MultiTurnConversation {
public static void main(String[] args) {

  Client client = new Client();
  Chat chatSession = client.chats.create("gemini-2.5-flash");

  GenerateContentResponse response =
      chatSession.sendMessage("I have 2 dogs in my house.");
  System.out.println("First response: " + response.text());

  response = chatSession.sendMessage("How many paws are in my house?");
  System.out.println("Second response: " + response.text());

  // Get the history of the chat session.
  // Passing 'true' to getHistory() returns the curated history, which excludes
  // empty or invalid parts.
  // Passing 'false' here would return the comprehensive history, including
  // empty or invalid parts.
  ImmutableList<Content> history = chatSession.getHistory(true);
  System.out.println("History: " + history);
}
}

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        role: 'user',
        parts: [
          { text: 'Hello' },
        ],
      },
      {
        role: 'model',
        parts: [
          { text: 'Great to meet you. What would you like to know?' },
        ],
      },
      {
        role: 'user',
        parts: [
          { text: 'I have two dogs in my house. How many paws are in my house?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

يمكن أيضًا استخدام البث لإجراء محادثات متعدّدة الأدوار.

Python

from google import genai

client = genai.Client()
chat = client.chats.create(model="gemini-2.5-flash")

response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
    print(chunk.text, end="")

response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
    print(chunk.text, end="")

for message in chat.get_history():
    print(f'role - {message.role}', end=": ")
    print(message.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({});

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.5-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const stream1 = await chat.sendMessageStream({
    message: "I have 2 dogs in my house.",
  });
  for await (const chunk of stream1) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }

  const stream2 = await chat.sendMessageStream({
    message: "How many paws are in my house?",
  });
  for await (const chunk of stream2) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }
}

await main();

Go

package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
  if err != nil {
      log.Fatal(err)
  }

  history := []*genai.Content{
      genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
      genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
  }

  chat, _ := client.Chats.Create(ctx, "gemini-2.5-flash", nil, history)
  stream := chat.SendMessageStream(ctx, genai.Part{Text: "How many paws are in my house?"})

  for chunk, _ := range stream {
      part := chunk.Candidates[0].Content.Parts[0]
      fmt.Print(part.Text)
  }
}

Java

import com.google.genai.Chat;
import com.google.genai.Client;
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;

public class MultiTurnConversationWithStreaming {
public static void main(String[] args) {

  Client client = new Client();
  Chat chatSession = client.chats.create("gemini-2.5-flash");

  ResponseStream<GenerateContentResponse> responseStream =
      chatSession.sendMessageStream("I have 2 dogs in my house.", null);

  for (GenerateContentResponse response : responseStream) {
    System.out.print(response.text());
  }

  responseStream = chatSession.sendMessageStream("How many paws are in my house?", null);

  for (GenerateContentResponse response : responseStream) {
    System.out.print(response.text());
  }

  // Get the history of the chat session. History is added after the stream
  // is consumed and includes the aggregated response from the stream.
  System.out.println("History: " + chatSession.getHistory(false));
}
}

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent?alt=sse \
  -H "x-goog-api-key: $GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'

برمجة التطبيقات

// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        role: 'user',
        parts: [
          { text: 'Hello' },
        ],
      },
      {
        role: 'model',
        parts: [
          { text: 'Great to meet you. What would you like to know?' },
        ],
      },
      {
        role: 'user',
        parts: [
          { text: 'I have two dogs in my house. How many paws are in my house?' },
        ],
      },
    ],
  };

  const url = 'https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:streamGenerateContent';
  const options = {
    method: 'POST',
    contentType: 'application/json',
    headers: {
      'x-goog-api-key': apiKey,
    },
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

النماذج المتوافقة

تتيح جميع النماذج في عائلة Gemini إنشاء النصوص. لمزيد من المعلومات حول النماذج وإمكاناتها، يُرجى الانتقال إلى صفحة النماذج.

أفضل الممارسات

نصائح حول الطلبات

بالنسبة إلى إنشاء النصوص الأساسية، غالبًا ما يكفي استخدام طلب بدون أمثلة بدون الحاجة إلى أمثلة أو تعليمات نظام أو تنسيق محدّد.

للحصول على نتائج أكثر تخصيصًا:

يمكنك الاطّلاع على دليل تصميم الطلبات للحصول على المزيد من النصائح.

الناتج المنظَّم

في بعض الحالات، قد تحتاج إلى إخراج منظَّم، مثل JSON. يمكنك الاطّلاع على دليل النتائج المنظَّمة لمعرفة كيفية إجراء ذلك.

الخطوات التالية