Gemini API ব্যবহার করে পাঠ্য তৈরি করুন

Gemini API পাঠ্য, ছবি, ভিডিও এবং অডিও সহ বিভিন্ন ধরণের ইনপুট থেকে পাঠ্য আউটপুট তৈরি করতে পারে। আপনি বিভিন্ন অ্যাপ্লিকেশনের জন্য পাঠ্য প্রজন্ম ব্যবহার করতে পারেন, যার মধ্যে রয়েছে:

  • সৃজনশীল লেখা
  • মিডিয়া সম্পদের বর্ণনা বা ব্যাখ্যা করা
  • পাঠ্য সমাপ্তি
  • ফ্রি-ফর্ম টেক্সট সংক্ষিপ্ত করা
  • ভাষার মধ্যে অনুবাদ
  • চ্যাটবট
  • আপনার নিজের উপন্যাস ব্যবহার ক্ষেত্রে

এই নির্দেশিকা আপনাকে দেখায় কিভাবে generateContent এবং streamGenerateContent API ব্যবহার করে পাঠ্য তৈরি করতে হয়। ফোকাস শুধুমাত্র টেক্সট এবং টেক্সট এবং ইমেজ ইনপুট থেকে টেক্সট আউটপুট. ভিডিও এবং অডিও ফাইলের সাথে মাল্টিমোডাল প্রম্পটিং সম্পর্কে আরও জানতে, ফাইল প্রম্পটিং কৌশলগুলি দেখুন।

আপনি শুরু করার আগে: আপনার প্রকল্প এবং API কী সেট আপ করুন

Gemini API কল করার আগে, আপনাকে আপনার প্রকল্প সেট আপ করতে হবে এবং আপনার API কী কনফিগার করতে হবে।

শুধুমাত্র পাঠ্য ইনপুট থেকে পাঠ্য তৈরি করুন

Gemini API ব্যবহার করে টেক্সট জেনারেট করার সবচেয়ে সহজ উপায় হল মডেলটিকে একটি মাত্র টেক্সট ইনপুট প্রদান করা, যেমন এই উদাহরণে দেখানো হয়েছে:

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContent(prompt);
console.log(result.response.text());

এই ক্ষেত্রে, প্রম্পট ("একটি জাদু ব্যাকপ্যাক সম্পর্কে একটি গল্প লিখুন") কোনো আউটপুট উদাহরণ, সিস্টেম নির্দেশাবলী, বা ফর্ম্যাটিং তথ্য অন্তর্ভুক্ত করে না। এটি একটি শূন্য-শট পদ্ধতির। কিছু ব্যবহারের ক্ষেত্রে, একটি এক-শট বা কয়েক-শট প্রম্পট আউটপুট তৈরি করতে পারে যা ব্যবহারকারীর প্রত্যাশার সাথে আরও সারিবদ্ধ। কিছু ক্ষেত্রে, আপনি মডেলটিকে কাজ বুঝতে বা নির্দিষ্ট নির্দেশিকা অনুসরণ করতে সাহায্য করার জন্য সিস্টেম নির্দেশাবলী প্রদান করতে চাইতে পারেন।

টেক্সট এবং ইমেজ ইনপুট থেকে টেক্সট তৈরি করুন

Gemini API মাল্টিমোডাল ইনপুট সমর্থন করে যা মিডিয়া ফাইলের সাথে পাঠ্য একত্রিত করে। নিম্নলিখিত উদাহরণ দেখায় কিভাবে পাঠ্য-এবং-চিত্র ইনপুট থেকে পাঠ্য তৈরি করা যায়:

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Describe how this product might be manufactured.";
// Note: The only accepted mime types are some image types, image/*.
const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

টেক্সট-অনলি প্রম্পটিংয়ের মতো, মাল্টিমোডাল প্রম্পটিং বিভিন্ন পদ্ধতি এবং পরিমার্জনকে জড়িত করতে পারে। এই উদাহরণ থেকে আউটপুট উপর নির্ভর করে, আপনি প্রম্পটে পদক্ষেপ যোগ করতে বা আপনার নির্দেশাবলী আরো নির্দিষ্ট হতে চাইতে পারেন. আরও জানতে, ফাইল প্রম্পটিং কৌশলগুলি দেখুন।

একটি পাঠ্য স্ট্রীম তৈরি করুন

ডিফল্টরূপে, সম্পূর্ণ পাঠ্য প্রজন্মের প্রক্রিয়াটি সম্পূর্ণ করার পরে মডেলটি একটি প্রতিক্রিয়া প্রদান করে। আপনি সম্পূর্ণ ফলাফলের জন্য অপেক্ষা না করে দ্রুত মিথস্ক্রিয়া অর্জন করতে পারেন এবং পরিবর্তে আংশিক ফলাফলগুলি পরিচালনা করতে স্ট্রিমিং ব্যবহার করতে পারেন।

নিচের উদাহরণে দেখানো হয়েছে কিভাবে streamGenerateContent পদ্ধতি ব্যবহার করে স্ট্রিমিং বাস্তবায়ন করা যায় যাতে শুধুমাত্র টেক্সট-ইনপুট প্রম্পট থেকে টেক্সট তৈরি করা যায়।

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

একটি ইন্টারেক্টিভ চ্যাট তৈরি করুন

আপনি আপনার ব্যবহারকারীদের জন্য ইন্টারেক্টিভ চ্যাট অভিজ্ঞতা তৈরি করতে Gemini API ব্যবহার করতে পারেন। API-এর চ্যাট বৈশিষ্ট্য ব্যবহার করে আপনাকে একাধিক রাউন্ড প্রশ্ন এবং প্রতিক্রিয়া সংগ্রহ করতে দেয়, ব্যবহারকারীদের উত্তরের দিকে ক্রমবর্ধমানভাবে পদক্ষেপ নিতে বা বহুমুখী সমস্যায় সহায়তা পেতে দেয়। এই বৈশিষ্ট্যটি এমন অ্যাপ্লিকেশনগুলির জন্য আদর্শ যা চলমান যোগাযোগের প্রয়োজন, যেমন চ্যাটবট, ইন্টারেক্টিভ টিউটর বা গ্রাহক সহায়তা সহকারী।

নিম্নলিখিত কোড উদাহরণ একটি মৌলিক চ্যাট বাস্তবায়ন দেখায়:

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

পাঠ্য প্রজন্ম কনফিগার করুন

আপনি মডেলে পাঠানো প্রতিটি প্রম্পটে প্যারামিটার অন্তর্ভুক্ত থাকে যা মডেলটি কীভাবে প্রতিক্রিয়া তৈরি করে তা নিয়ন্ত্রণ করে। আপনি এই পরামিতিগুলি কনফিগার করতে GenerationConfig ব্যবহার করতে পারেন। আপনি যদি প্যারামিটারগুলি কনফিগার না করেন তবে মডেলটি ডিফল্ট বিকল্পগুলি ব্যবহার করে, যা মডেল অনুসারে পরিবর্তিত হতে পারে।

নিম্নলিখিত উদাহরণটি দেখায় কিভাবে উপলব্ধ বিকল্পগুলির কয়েকটি কনফিগার করতে হয়।

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text());

candidateCount প্রত্যাবর্তনের জন্য উত্পন্ন প্রতিক্রিয়ার সংখ্যা নির্দিষ্ট করে। বর্তমানে, এই মানটি শুধুমাত্র 1 তে সেট করা যেতে পারে৷ যদি সেট না করা হয় তবে এটি 1 এ ডিফল্ট হবে৷

stopSequences ক্যারেক্টার সিকোয়েন্সের সেট নির্দিষ্ট করে (5 পর্যন্ত) যা আউটপুট জেনারেশন বন্ধ করবে। নির্দিষ্ট করা হলে, API একটি stop_sequence-এর প্রথম উপস্থিতিতে থেমে যাবে। প্রতিক্রিয়ার অংশ হিসেবে স্টপ সিকোয়েন্স অন্তর্ভুক্ত করা হবে না।

maxOutputTokens একজন প্রার্থীকে অন্তর্ভুক্ত করার জন্য সর্বাধিক সংখ্যক টোকেন সেট করে।

temperature আউটপুটের এলোমেলোতা নিয়ন্ত্রণ করে। আরো সৃজনশীল প্রতিক্রিয়ার জন্য উচ্চ মান ব্যবহার করুন, এবং আরো নির্ধারক প্রতিক্রিয়ার জন্য নিম্ন মান ব্যবহার করুন। মান [0.0, 2.0] থেকে পরিসীমা হতে পারে।

আপনি generateContent করতে পৃথক কল কনফিগার করতে পারেন:

const result = await model.generateContent({
  contents: [
    {
      role: 'user',
      parts: [
        {
          text: prompt,
        }
      ],
    }
  ],
  generationConfig: {
    maxOutputTokens: 1000,
    temperature: 0.1,
  },
});
console.log(result.response.text());

মডেল কনস্ট্রাক্টরের পৃথক কল ওভাররাইড মানগুলিতে সেট করা যেকোনো মান।

এরপর কি

এই নির্দেশিকাটি দেখায় কিভাবে generateContent এবং streamGenerateContent ব্যবহার করতে হয় শুধুমাত্র-টেক্সট এবং টেক্সট-এবং-ইমেজ ইনপুট থেকে টেক্সট আউটপুট তৈরি করতে। Gemini API ব্যবহার করে টেক্সট তৈরি করার বিষয়ে আরও জানতে, নিম্নলিখিত সংস্থানগুলি দেখুন:

  • ফাইল প্রম্পটিং কৌশল : জেমিনি এপিআই টেক্সট, ইমেজ, অডিও এবং ভিডিও ডেটা সহ প্রম্পটিং সমর্থন করে, যা মাল্টিমডাল প্রম্পটিং নামেও পরিচিত।
  • সিস্টেম নির্দেশাবলী : সিস্টেম নির্দেশাবলী আপনাকে আপনার নির্দিষ্ট প্রয়োজন এবং ব্যবহারের ক্ষেত্রের উপর ভিত্তি করে মডেলের আচরণ পরিচালনা করতে দেয়।
  • নিরাপত্তা নির্দেশিকা : কখনও কখনও জেনারেটিভ এআই মডেলগুলি অপ্রত্যাশিত আউটপুট তৈরি করে, যেমন আউটপুটগুলি ভুল, পক্ষপাতদুষ্ট বা আপত্তিকর। এই ধরনের আউটপুট থেকে ক্ষতির ঝুঁকি সীমিত করার জন্য পোস্ট-প্রসেসিং এবং মানব মূল্যায়ন অপরিহার্য।