Generowanie tekstu

Gemini API może generować tekst jako odpowiedź na różne dane wejściowe, w tym tekst, obrazy, filmy i dźwięk. Z tego przewodnika dowiesz się, jak generować tekst na podstawie tekstu i obrazów. Obejmuje ona też strumieniowanie, czat i instrukcje dotyczące systemu.

Wprowadzanie tekstu

Najprostszym sposobem generowania tekstu za pomocą interfejsu Gemini API jest przekazanie modelowi pojedynczego wejścia tekstowego, jak w tym przykładzie:

Python

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["How does AI work?"]
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: "How does AI work?",
  });
  console.log(response.text);
}

await main();

Przeczytaj

// import packages here

func main() {
  ctx := context.Background()
  client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
  if err != nil {
    log.Fatal(err)
  }
  defer client.Close()

  model := client.GenerativeModel("gemini-2.0-flash")
  resp, err := model.GenerateContent(ctx, genai.Text("How does AI work?"))
  if err != nil {
    log.Fatal(err)
  }
  printResponse(resp) // helper function for printing content parts
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "How does AI work?"
          }
        ]
      }
    ]
  }'

Dane wejściowe dotyczące obrazu

Interfejs Gemini API obsługuje multimodalne dane wejściowe, które łączą tekst i pliki multimedialne. Ten przykład pokazuje, jak wygenerować tekst na podstawie tekstu i obrazu:

Python

from PIL import Image
from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")

image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=[image, "Tell me about this instrument"]
)
print(response.text)

JavaScript

import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const image = await ai.files.upload({
    file: "/path/to/organ.png",
  });
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: [
      createUserContent([
        "Tell me about this instrument",
        createPartFromUri(image.uri, image.mimeType),
      ]),
    ],
  });
  console.log(response.text);
}

await main();

Przeczytaj

model := client.GenerativeModel("gemini-2.0-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
  log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
  genai.Text("Tell me about this instrument"),
  genai.ImageData("jpeg", imgData))
if err != nil {
  log.Fatal(err)
}

printResponse(resp)

REST

# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"

# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT

cat > "$TEMP_JSON" << EOF
{
  "contents": [
    {
      "parts": [
        {
          "text": "Tell me about this instrument"
        },
        {
          "inline_data": {
            "mime_type": "image/jpeg",
            "data": "$(cat "$TEMP_B64")"
          }
        }
      ]
    }
  ]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d "@$TEMP_JSON"

Wyjście strumieniowe

Domyślnie model zwraca odpowiedź po zakończeniu całego procesu generowania tekstu. Szybsze interakcje możesz uzyskać, używając przesyłania strumieniowego do zwracania wystąpień funkcji GenerateContentResponse w miarę ich generowania.

Python

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content_stream(
    model="gemini-2.0-flash",
    contents=["Explain how AI works"]
)
for chunk in response:
    print(chunk.text, end="")

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContentStream({
    model: "gemini-2.0-flash",
    contents: "Explain how AI works",
  });

  for await (const chunk of response) {
    console.log(chunk.text);
  }
}

await main();

Przeczytaj

model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
  resp, err := iter.Next()
  if err == iterator.Done {
    break
  }
  if err != nil {
    log.Fatal(err)
  }
  printResponse(resp)
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=${GEMINI_API_KEY}" \
  -H 'Content-Type: application/json' \
  --no-buffer \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ]
  }'

Rozmowy wieloetapowe

Pakiet Gemini SDK umożliwia zbieranie wielu serii pytań i odpowiedzi w ramach czatu. Format czatu umożliwia użytkownikom stopniowe uzyskiwanie odpowiedzi i uzyskiwanie pomocy w przypadku problemów wielowątkowych. Implementacja czatu w tym pakiecie SDK udostępnia interfejs do śledzenia historii rozmowy, ale w tle używa tej samej metody generateContent do tworzenia odpowiedzi.

Ten przykładowy kod pokazuje podstawową implementację czatu:

Python

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")

response = chat.send_message("I have 2 dogs in my house.")
print(response.text)

response = chat.send_message("How many paws are in my house?")
print(response.text)

for message in chat.get_history():
    print(f'role - {message.role}',end=": ")
    print(message.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.0-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const response1 = await chat.sendMessage({
    message: "I have 2 dogs in my house.",
  });
  console.log("Chat response 1:", response1.text);

  const response2 = await chat.sendMessage({
    message: "How many paws are in my house?",
  });
  console.log("Chat response 2:", response2.text);
}

await main();

Przeczytaj

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
  {
    Parts: []genai.Part{
      genai.Text("Hello, I have 2 dogs in my house."),
    },
    Role: "user",
  },
  {
    Parts: []genai.Part{
      genai.Text("Great to meet you. What would you like to know?"),
    },
    Role: "model",
  },
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
  log.Fatal(err)
}
printResponse(res)

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'

Możesz też prowadzić transmisję strumieniową z czatem, jak w tym przykładzie:

Python

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")

response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
    print(chunk.text, end="")

response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
    print(chunk.text, end="")

for message in chat.get_history():
    print(f'role - {message.role}', end=": ")
    print(message.parts[0].text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.0-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const stream1 = await chat.sendMessageStream({
    message: "I have 2 dogs in my house.",
  });
  for await (const chunk of stream1) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }

  const stream2 = await chat.sendMessageStream({
    message: "How many paws are in my house?",
  });
  for await (const chunk of stream2) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }
}

await main();

Przeczytaj

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
  {
    Parts: []genai.Part{
      genai.Text("Hello, I have 2 dogs in my house."),
    },
    Role: "user",
  },
  {
    Parts: []genai.Part{
      genai.Text("Great to meet you. What would you like to know?"),
    },
    Role: "model",
  },
}

iter := cs.SendMessageStream(ctx, genai.Text("How many paws are in my house?"))
for {
  resp, err := iter.Next()
  if err == iterator.Done {
    break
  }
  if err != nil {
    log.Fatal(err)
  }
  printResponse(resp)
}

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'

Parametry konfiguracji

Każdy prompt wysyłany do modelu zawiera parametry, które określają, jak model wygeneruje odpowiedzi. Możesz skonfigurować te parametry lub pozwolić modelowi używać opcji domyślnych.

W tym przykładzie pokazujemy, jak skonfigurować parametry modelu:

Python

from google import genai
from google.genai import types

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["Explain how AI works"],
    config=types.GenerateContentConfig(
        max_output_tokens=500,
        temperature=0.1
    )
)
print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: "Explain how AI works",
    config: {
      maxOutputTokens: 500,
      temperature: 0.1,
    },
  });
  console.log(response.text);
}

await main();

Przeczytaj

model := client.GenerativeModel("gemini-1.5-pro-latest")
model.SetTemperature(0.9)
model.SetTopP(0.5)
model.SetTopK(20)
model.SetMaxOutputTokens(100)
model.SystemInstruction = genai.NewUserContent(genai.Text("You are Yoda from Star Wars."))
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
if err != nil {
  log.Fatal(err)
}
printResponse(resp)

REST

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ],
    "generationConfig": {
      "stopSequences": [
        "Title"
      ],
      "temperature": 1.0,
      "maxOutputTokens": 800,
      "topP": 0.8,
      "topK": 10
    }
  }'

Oto niektóre parametry modelu, które możesz skonfigurować. (konwencje nazewnictwa różnią się w zależności od języka programowania).

  • stopSequences: określa zbiór sekwencji znaków (maksymalnie 5), które powodują przerwanie generowania danych wyjściowych. Jeśli zostanie podany, interfejs API zatrzyma się przy pierwszym wystąpieniu stop_sequence. Sekwencja zatrzymania nie będzie uwzględniona w odpowiedzi.
  • temperature: określa losowość danych wyjściowych. Użyj wyższych wartości, aby uzyskać bardziej kreatywne odpowiedzi, i niższych, aby uzyskać bardziej deterministyczne odpowiedzi. Wartości muszą mieścić się w zakresie [0,0, 2,0].
  • maxOutputTokens: określa maksymalną liczbę tokenów do uwzględnienia w kandydacie.
  • topP: zmienia sposób, w jaki model wybiera tokeny w celu wygenerowania odpowiedzi. Tokeny są wybierane od najbardziej do najmniej prawdopodobnego do momentu, aż suma ich prawdopodobieństw będzie równa wartości topP. Wartością domyślną parametru topP jest 0,95.
  • topK: zmienia sposób, w jaki model wybiera tokeny w celu wygenerowania odpowiedzi. Wartość topK = 1 oznacza, że wybierany jest najbardziej prawdopodobny token spośród wszystkich tokenów w słowniku modelu, natomiast wartość topK = 3 oznacza, że następny token jest wybierany spośród 3 najbardziej prawdopodobnych z użyciem temperatury. Tokeny są następnie filtrowane na podstawie parametru topP, a ostateczny wybór tokena dokonywany jest przy pomocy próbkowania z użyciem temperatury.

Instrukcje systemowe

Instrukcje systemowe umożliwiają kierowanie działaniem modelu na podstawie konkretnego przypadku użycia. Podając instrukcje systemowe, dostarczasz modelowi dodatkowego kontekstu, który ułatwi mu zrozumienie zadania i generowanie bardziej spersonalizowanych odpowiedzi. Model powinien przestrzegać instrukcji systemowych w trakcie całej interakcji z użytkownikiem, co umożliwia określenie zachowania na poziomie produktu niezależnie od promptów dostarczanych przez użytkowników końcowych.

Instrukcje systemowe możesz ustawić podczas inicjowania modelu:

Python

from google import genai
from google.genai import types

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content(
    model="gemini-2.0-flash",
    config=types.GenerateContentConfig(
        system_instruction="You are a cat. Your name is Neko."),
    contents="Hello there"
)

print(response.text)

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: "Hello there",
    config: {
      systemInstruction: "You are a cat. Your name is Neko.",
    },
  });
  console.log(response.text);
}

await main();

Przeczytaj

// import packages here

func main() {
  ctx := context.Background()
  client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
  if err != nil {
    log.Fatal(err)
  }
  defer client.Close()

  model := client.GenerativeModel("gemini-2.0-flash")
  model.SystemInstruction = &genai.Content{
    Parts: []genai.Part{genai.Text(`
      You are a cat. Your name is Neko.
    `)},
  }
  resp, err := model.GenerateContent(ctx, genai.Text("Hello there"))
  if err != nil {
    log.Fatal(err)
  }
  printResponse(resp) // helper function for printing content parts
}

REST

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -d '{
    "system_instruction": {
      "parts": [
        {
          "text": "You are a cat. Your name is Neko."
        }
      ]
    },
    "contents": [
      {
        "parts": [
          {
            "text": "Hello there"
          }
        ]
      }
    ]
  }'

Następnie możesz wysyłać żądania do modelu jak zwykle.

Obsługiwane modele

Cała rodzina modeli Gemini obsługuje generowanie tekstu. Więcej informacji o modelach i ich możliwościach znajdziesz w artykule Modele.

Wskazówki dotyczące promptów

W przypadku podstawowych zastosowań generowania tekstu prompt może nie wymagać przykładów danych wyjściowych, instrukcji systemowych ani informacji o formatowaniu. Jest to podejście zero-shot. W niektórych przypadkach prompt jednokrotny lub kilkukrotny może generować wyniki lepiej dopasowane do oczekiwań użytkowników. W niektórych przypadkach możesz też podać instrukcje systemowe, aby pomóc modelowi zrozumieć zadanie lub przestrzegać określonych wytycznych.

Co dalej?