Metin oluşturma

Gemini API, Gemini modellerinden yararlanarak metin, resim, video ve ses gibi çeşitli girişlerden metin çıkışı oluşturabilir.

Tek bir metin girişi alan temel bir örnek aşağıda verilmiştir:

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["How does AI work?"]
)
print(response.text)
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: "How does AI work?",
  });
  console.log(response.text);
}

await main();
package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
      APIKey:  os.Getenv("GEMINI_API_KEY"),
      Backend: genai.BackendGeminiAPI,
  })

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.0-flash",
      genai.Text("Explain how AI works in a few words"),
      nil,
  )

  fmt.Println(result.Text())
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "How does AI work?"
          }
        ]
      }
    ]
  }'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'How AI does work?' },
        ],
      },
    ],
  };

  const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
  const options = {
    method: 'POST',
    contentType: 'application/json',
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Sistem talimatları ve yapılandırması

Sistem talimatlarıyla Gemini modellerinin davranışını yönlendirebilirsiniz. Bunu yapmak için bir GenerateContentConfig nesnesi iletin.

from google import genai
from google.genai import types

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content(
    model="gemini-2.0-flash",
    config=types.GenerateContentConfig(
        system_instruction="You are a cat. Your name is Neko."),
    contents="Hello there"
)

print(response.text)
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: "Hello there",
    config: {
      systemInstruction: "You are a cat. Your name is Neko.",
    },
  });
  console.log(response.text);
}

await main();
package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
      APIKey:  os.Getenv("GEMINI_API_KEY"),
      Backend: genai.BackendGeminiAPI,
  })

  config := &genai.GenerateContentConfig{
      SystemInstruction: genai.NewContentFromText("You are a cat. Your name is Neko.", genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.0-flash",
      genai.Text("Hello there"),
      config,
  )

  fmt.Println(result.Text())
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -d '{
    "system_instruction": {
      "parts": [
        {
          "text": "You are a cat. Your name is Neko."
        }
      ]
    },
    "contents": [
      {
        "parts": [
          {
            "text": "Hello there"
          }
        ]
      }
    ]
  }'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const systemInstruction = {
    parts: [{
      text: 'You are a cat. Your name is Neko.'
    }]
  };

  const payload = {
    systemInstruction,
    contents: [
      {
        parts: [
          { text: 'Hello there' },
        ],
      },
    ],
  };

  const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
  const options = {
    method: 'POST',
    contentType: 'application/json',
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

GenerateContentConfig nesnesi, sıcaklık gibi varsayılan oluşturma parametrelerini de geçersiz kılmanıza olanak tanır.

from google import genai
from google.genai import types

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=["Explain how AI works"],
    config=types.GenerateContentConfig(
        max_output_tokens=500,
        temperature=0.1
    )
)
print(response.text)
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: "Explain how AI works",
    config: {
      maxOutputTokens: 500,
      temperature: 0.1,
    },
  });
  console.log(response.text);
}

await main();
package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
    APIKey:  os.Getenv("GEMINI_API_KEY"),
    Backend: genai.BackendGeminiAPI,
  })

  temp := float32(0.9)
  topP := float32(0.5)
  topK := float32(20.0)
  maxOutputTokens := int32(100)

  config := &genai.GenerateContentConfig{
    Temperature:       &temp,
    TopP:              &topP,
    TopK:              &topK,
    MaxOutputTokens:   maxOutputTokens,
    ResponseMIMEType:  "application/json",
  }

  result, _ := client.Models.GenerateContent(
    ctx,
    "gemini-2.0-flash",
    genai.Text("What is the average size of a swallow?"),
    config,
  )

  fmt.Println(result.Text())
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ],
    "generationConfig": {
      "stopSequences": [
        "Title"
      ],
      "temperature": 1.0,
      "maxOutputTokens": 800,
      "topP": 0.8,
      "topK": 10
    }
  }'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const generationConfig = {
    temperature: 1,
    topP: 0.95,
    topK: 40,
    maxOutputTokens: 8192,
    responseMimeType: 'text/plain',
  };

  const payload = {
    generationConfig,
    contents: [
      {
        parts: [
          { text: 'Explain how AI works in a few words' },
        ],
      },
    ],
  };

  const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
  const options = {
    method: 'POST',
    contentType: 'application/json',
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Yapılandırılabilir parametrelerin ve açıklamalarının tam listesi için API referansımızdaki GenerateContentConfig bölümüne bakın.

Çok modlu girişler

Gemini API, metni medya dosyalarıyla birleştirmenize olanak tanıyan çoklu biçimli girişleri destekler. Aşağıdaki örnekte resim sağlama gösterilmektedir:

from PIL import Image
from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")

image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
    model="gemini-2.0-flash",
    contents=[image, "Tell me about this instrument"]
)
print(response.text)
import {
  GoogleGenAI,
  createUserContent,
  createPartFromUri,
} from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const image = await ai.files.upload({
    file: "/path/to/organ.png",
  });
  const response = await ai.models.generateContent({
    model: "gemini-2.0-flash",
    contents: [
      createUserContent([
        "Tell me about this instrument",
        createPartFromUri(image.uri, image.mimeType),
      ]),
    ],
  });
  console.log(response.text);
}

await main();
package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
      APIKey:  os.Getenv("GEMINI_API_KEY"),
      Backend: genai.BackendGeminiAPI,
  })

  imagePath := "/path/to/organ.jpg"
  imgData, _ := os.ReadFile(imagePath)

  parts := []*genai.Part{
      genai.NewPartFromText("Tell me about this instrument"),
      &genai.Part{
          InlineData: &genai.Blob{
              MIMEType: "image/jpeg",
              Data:     imgData,
          },
      },
  }

  contents := []*genai.Content{
      genai.NewContentFromParts(parts, genai.RoleUser),
  }

  result, _ := client.Models.GenerateContent(
      ctx,
      "gemini-2.0-flash",
      contents,
      nil,
  )

  fmt.Println(result.Text())
}
# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"

# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT

cat > "$TEMP_JSON" << EOF
{
  "contents": [
    {
      "parts": [
        {
          "text": "Tell me about this instrument"
        },
        {
          "inline_data": {
            "mime_type": "image/jpeg",
            "data": "$(cat "$TEMP_B64")"
          }
        }
      ]
    }
  ]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
  -H 'Content-Type: application/json' \
  -X POST \
  -d "@$TEMP_JSON"
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const imageUrl = 'http://image/url';
  const image = getImageData(imageUrl);
  const payload = {
    contents: [
      {
        parts: [
          { image },
          { text: 'Tell me about this instrument' },
        ],
      },
    ],
  };

  const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
  const options = {
    method: 'POST',
    contentType: 'application/json',
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

function getImageData(url) {
  const blob = UrlFetchApp.fetch(url).getBlob();

  return {
    mimeType: blob.getContentType(),
    data: Utilities.base64Encode(blob.getBytes())
  };
}

Resim sağlamanın alternatif yöntemleri ve daha gelişmiş resim işleme için resim anlama kılavuzumuzu inceleyin. API, doküman, video ve ses girişlerini ve bunların anlaşılmasını da destekler.

Yanıtları akış şeklinde gösterme

Varsayılan olarak model, yalnızca oluşturma sürecinin tamamı tamamlandıktan sonra yanıt döndürür.

Daha akıcı etkileşimler için GenerateContentResponse örneklerini oluşturuldukları sırada artımlı olarak almak üzere aktarımı kullanın.

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")

response = client.models.generate_content_stream(
    model="gemini-2.0-flash",
    contents=["Explain how AI works"]
)
for chunk in response:
    print(chunk.text, end="")
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const response = await ai.models.generateContentStream({
    model: "gemini-2.0-flash",
    contents: "Explain how AI works",
  });

  for await (const chunk of response) {
    console.log(chunk.text);
  }
}

await main();
package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
      APIKey:  os.Getenv("GEMINI_API_KEY"),
      Backend: genai.BackendGeminiAPI,
  })

  stream := client.Models.GenerateContentStream(
      ctx,
      "gemini-2.0-flash",
      genai.Text("Write a story about a magic backpack."),
      nil,
  )

  for chunk, _ := range stream {
      part := chunk.Candidates[0].Content.Parts[0]
      fmt.Print(part.Text)
  }
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=${GEMINI_API_KEY}" \
  -H 'Content-Type: application/json' \
  --no-buffer \
  -d '{
    "contents": [
      {
        "parts": [
          {
            "text": "Explain how AI works"
          }
        ]
      }
    ]
  }'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        parts: [
          { text: 'Explain how AI works' },
        ],
      },
    ],
  };

  const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?key=${apiKey}`;
  const options = {
    method: 'POST',
    contentType: 'application/json',
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Çoklu turlu görüşmeler (Chat)

SDK'larımız, birden fazla istem ve yanıtı bir sohbete toplama işlevi sunar. Böylece, sohbet geçmişini kolayca takip edebilirsiniz.

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")

response = chat.send_message("I have 2 dogs in my house.")
print(response.text)

response = chat.send_message("How many paws are in my house?")
print(response.text)

for message in chat.get_history():
    print(f'role - {message.role}',end=": ")
    print(message.parts[0].text)
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.0-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const response1 = await chat.sendMessage({
    message: "I have 2 dogs in my house.",
  });
  console.log("Chat response 1:", response1.text);

  const response2 = await chat.sendMessage({
    message: "How many paws are in my house?",
  });
  console.log("Chat response 2:", response2.text);
}

await main();
package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
      APIKey:  os.Getenv("GEMINI_API_KEY"),
      Backend: genai.BackendGeminiAPI,
  })

  history := []*genai.Content{
      genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
      genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
  }

  chat, _ := client.Chats.Create(ctx, "gemini-2.0-flash", nil, history)
  res, _ := chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})

  if len(res.Candidates) > 0 {
      fmt.Println(res.Candidates[0].Content.Parts[0].Text)
  }
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        role: 'user',
        parts: [
          { text: 'Hello' },
        ],
      },
      {
        role: 'model',
        parts: [
          { text: 'Great to meet you. What would you like to know?' },
        ],
      },
      {
        role: 'user',
        parts: [
          { text: 'I have two dogs in my house. How many paws are in my house?' },
        ],
      },
    ],
  };

  const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=${apiKey}`;
  const options = {
    method: 'POST',
    contentType: 'application/json',
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Akış, çok turlu görüşmeler için de kullanılabilir.

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")

response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
    print(chunk.text, end="")

response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
    print(chunk.text, end="")

for message in chat.get_history():
    print(f'role - {message.role}', end=": ")
    print(message.parts[0].text)
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const chat = ai.chats.create({
    model: "gemini-2.0-flash",
    history: [
      {
        role: "user",
        parts: [{ text: "Hello" }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
  });

  const stream1 = await chat.sendMessageStream({
    message: "I have 2 dogs in my house.",
  });
  for await (const chunk of stream1) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }

  const stream2 = await chat.sendMessageStream({
    message: "How many paws are in my house?",
  });
  for await (const chunk of stream2) {
    console.log(chunk.text);
    console.log("_".repeat(80));
  }
}

await main();
package main

import (
  "context"
  "fmt"
  "os"
  "google.golang.org/genai"
)

func main() {

  ctx := context.Background()
  client, _ := genai.NewClient(ctx, &genai.ClientConfig{
      APIKey:  os.Getenv("GEMINI_API_KEY"),
      Backend: genai.BackendGeminiAPI,
  })

  history := []*genai.Content{
      genai.NewContentFromText("Hi nice to meet you! I have 2 dogs in my house.", genai.RoleUser),
      genai.NewContentFromText("Great to meet you. What would you like to know?", genai.RoleModel),
  }

  chat, _ := client.Chats.Create(ctx, "gemini-2.0-flash", nil, history)
  stream := chat.SendMessageStream(ctx, genai.Part{Text: "How many paws are in my house?"})

  for chunk, _ := range stream {
      part := chunk.Candidates[0].Content.Parts[0]
      fmt.Print(part.Text)
  }
}
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY \
  -H 'Content-Type: application/json' \
  -X POST \
  -d '{
    "contents": [
      {
        "role": "user",
        "parts": [
          {
            "text": "Hello"
          }
        ]
      },
      {
        "role": "model",
        "parts": [
          {
            "text": "Great to meet you. What would you like to know?"
          }
        ]
      },
      {
        "role": "user",
        "parts": [
          {
            "text": "I have two dogs in my house. How many paws are in my house?"
          }
        ]
      }
    ]
  }'
// See https://developers.google.com/apps-script/guides/properties
// for instructions on how to set the API key.
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

function main() {
  const payload = {
    contents: [
      {
        role: 'user',
        parts: [
          { text: 'Hello' },
        ],
      },
      {
        role: 'model',
        parts: [
          { text: 'Great to meet you. What would you like to know?' },
        ],
      },
      {
        role: 'user',
        parts: [
          { text: 'I have two dogs in my house. How many paws are in my house?' },
        ],
      },
    ],
  };

  const url = `https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?key=${apiKey}`;
  const options = {
    method: 'POST',
    contentType: 'application/json',
    payload: JSON.stringify(payload)
  };

  const response = UrlFetchApp.fetch(url, options);
  const data = JSON.parse(response);
  const content = data['candidates'][0]['content']['parts'][0]['text'];
  console.log(content);
}

Desteklenen modeller

Gemini ailesindeki tüm modeller metin oluşturmayı destekler. Modeller ve özellikleri hakkında daha fazla bilgi edinmek için Modeller sayfasını ziyaret edin.

En iyi uygulamalar

İstem yazmayla ilgili ipuçları

Temel metin oluşturma için genellikle örneklere, sistem talimatlarına veya belirli biçimlendirmelere ihtiyaç duymadan sıfır görevli istem yeterlidir.

Daha özelleştirilmiş sonuçlar için:

  • Modele rehberlik etmek için Sistem talimatları'nı kullanın.
  • Modele rehberlik etmek için birkaç örnek giriş ve çıkış sağlayın. Buna genellikle az sayıda atış istemi denir.
  • Gelişmiş kullanım alanları için ince ayarlama yapabilirsiniz.

Daha fazla ipucu için istem mühendisliği kılavuzumuza göz atın.

Yapılandırılmış çıkış

Bazı durumlarda JSON gibi yapılandırılmış bir çıkışa ihtiyacınız olabilir. Bunu nasıl yapacağınızı öğrenmek için yapılandırılmış çıkış kılavuzumuzu inceleyin.

Sırada ne var?