Menggunakan pemikiran Gemini

Gemini 2.5 Pro Experimental dan Gemini 2.0 Flash Thinking Experimental adalah model yang menggunakan "proses berpikir" internal selama pembuatan respons. Proses ini berkontribusi pada peningkatan kemampuan penalaran mereka dan memungkinkan mereka menyelesaikan tugas yang rumit. Panduan ini menunjukkan cara menggunakan model Gemini dengan kemampuan berpikir.

Menggunakan model pemikiran

Model dengan kemampuan berpikir tersedia di Google AI Studio dan melalui Gemini API. Perhatikan bahwa proses berpikir terlihat dalam Google AI Studio, tetapi tidak disediakan sebagai bagian dari output API.

Mengirim permintaan dasar

from google import genai

client = genai.Client(api_key="GEMINI_API_KEY")
prompt = "Explain the concept of Occam's Razor and provide a simple, everyday example."
response = client.models.generate_content(
    model="gemini-2.5-pro-exp-03-25",  # or gemini-2.0-flash-thinking-exp
    contents=prompt
)

print(response.text)
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
  const prompt = "Explain the concept of Occam's Razor and provide a simple, everyday example.";

  const response = await ai.models.generateContent({
    model: "gemini-2.5-pro-exp-03-25",  // or gemini-2.0-flash-thinking-exp
    contents: prompt,
  });

  console.log(response.text);
}

main();
// import packages here

func main() {
  ctx := context.Background()
  client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
  if err != nil {
    log.Fatal(err)
  }
  defer client.Close()

  model := client.GenerativeModel("gemini-2.5-pro-exp-03-25")  // or gemini-2.0-flash-thinking-exp
  resp, err := model.GenerateContent(ctx, genai.Text("Explain the concept of Occam's Razor and provide a simple, everyday example."))
  if err != nil {
    log.Fatal(err)
  }
  fmt.Println(resp.Text())
}
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-pro-exp-03-25:generateContent?key=$YOUR_API_KEY" \
 -H 'Content-Type: application/json' \
 -X POST \
 -d '{
   "contents": [
     {
       "parts": [
         {
           "text": "Explain the concept of Occam\''s Razor and provide a simple, everyday example."
         }
       ]
     }
   ]
 }'
 ```

Percakapan pemikiran multi-giliran

Untuk mempertimbangkan histori chat sebelumnya, Anda dapat menggunakan percakapan multi-giliran.

Dengan SDK, Anda dapat membuat sesi chat untuk mengelola status percakapan.

from google import genai

client = genai.Client(api_key='GEMINI_API_KEY')

chat = client.aio.chats.create(
    model='gemini-2.5-pro-exp-03-25',  # or gemini-2.0-flash-thinking-exp
)
response = await chat.send_message('What is your name?')
print(response.text)
response = await chat.send_message('What did you just say before this?')
print(response.text)
import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });

async function main() {
    const chat = ai.chats.create({
        model: 'gemini-2.5-pro-exp-03-25'  // or gemini-2.0-flash-thinking-exp
    });

    const response = await chat.sendMessage({
        message: 'What is your name?'
    });
    console.log(response.text);

    response = await chat.sendMessage({
        message: 'What did you just say before this?'
    });
    console.log(response.text);
}

main();

Apa langkah selanjutnya?