The LLM Inference API lets you run large language models (LLMs) completely on-device, which you can use to perform a wide range of tasks, such as generating text, retrieving information in natural language form, and summarizing documents. The task provides built-in support for multiple text-to-text large language models, so you can apply the latest on-device generative AI models to your apps and products.
The task supports the following variants of Gemma: Gemma-2 2B, Gemma 2B, and Gemma 7B. Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. It also supports the following external models: Phi-2, Falcon-RW-1B and StableLM-3B.
In addition to the models supported natively, users can map other models using Google's AI Edge offerings (including mapping PyTorch models). This allows users to export a mapped model into multi-signature TensorFlow Lite models, which are bundled with tokenizer parameters to create a Task Bundle.
Get Started
Start using this task by following one of these implementation guides for your target platform. These platform-specific guides walk you through a basic implementation of this task, with code examples that use an available model and the recommended configuration options:
Web:
Android:
iOS
Task details
This section describes the capabilities, inputs, outputs, and configuration options of this task.
Features
The LLM Inference API contains the following key features:
- Text-to-text generation - Generate text based on an input text prompt.
- LLM selection - Apply multiple models to tailor the app for your specific use cases. You can also retrain and apply customized weights to the model.
- LoRA support - Extend and customize the LLM capability with LoRA model either by training on your all dataset, or taking prepared prebuilt LoRA models from the open-source community (native models only).
Task inputs | Task outputs |
---|---|
The LLM Inference API accepts the following inputs:
|
The LLM Inference API outputs the following results:
|
Configurations options
This task has the following configuration options:
Option Name | Description | Value Range | Default Value |
---|---|---|---|
modelPath |
The path to where the model is stored within the project directory. | PATH | N/A |
maxTokens |
The maximum number of tokens (input tokens + output tokens) the model handles. | Integer | 512 |
topK |
The number of tokens the model considers at each step of generation. Limits predictions to the top k most-probable tokens. | Integer | 40 |
temperature |
The amount of randomness introduced during generation. A higher temperature results in more creativity in the generated text, while a lower temperature produces more predictable generation. | Float | 0.8 |
randomSeed |
The random seed used during text generation. | Integer | 0 |
loraPath |
The absolute path to the LoRA model locally on the device. Note: this is only compatible with GPU models. | PATH | N/A |
resultListener |
Sets the result listener to receive the results asynchronously. Only applicable when using the async generation method. | N/A | N/A |
errorListener |
Sets an optional error listener. | N/A | N/A |
Models
The LLM Inference API contains built-in support for severable text-to-text large language models that are optimized to run on browsers and mobile devices. These lightweight models can be downloaded to run inferences completely on-device.
Before initializing the LLM Inference API, download one of the supported models and store the file within your project directory.
Gemma-2 2B
Gemma-2 2B is the latest model in the Gemma family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. The model contains 2B parameters and open weights. Gemma-2 2B is known for state-of-the art reasoning skills for models in its class.
If you download Gemma-2 2B from Kaggle, you must convert the model to a MediaPipe-friendly format. The LLM Inference API requires the following steps to convert and run the model:
- Download the
model.ckpt
PyTorch checkpoint from Kaggle - Use the tooling in AI Edge Torch to create and convert the model to TF Lite format.
- Create the Task Bundle from the TFLite file and Gemma tokenizer. For
Gemma models, the recommended start_token is
<bos>
and stop_tokens are<eos>
and<end_of_turn>
for chat applications.
The resulting task
file can be used for inference with the LLM Inference API
Gemma 2B
Gemma 2B is a part of a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. The model contains 2B parameters and open weights. This model is well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning.
The Gemma 2B models come in four variants:
- gemma-2b-it-cpu-int4: Gemma 2B 4-bit model with CPU compatibility.
- gemma-2b-it-cpu-int8: Gemma 2B 8-bit model with CPU compatibility.
- gemma-2b-it-gpu-int4: Gemma 2B 4-bit model with GPU compatibility.
- gemma-2b-it-gpu-int8: Gemma 2B 8-bit model with GPU compatibility.
You can also tune the model and add new weights before adding it to the app. For more information on tuning and customizing Gemma, see Tuning Gemma. After downloading Gemma from Kaggle Models, the model is already in the appropriate format to use with MediaPipe.
If you download Gemma 2B from Hugging Face, you must convert the model to a MediaPipe-friendly format. The LLM Inference API requires the following files to be downloaded and converted:
model-00001-of-00002.safetensors
model-00002-of-00002.safetensors
tokenizer.json
tokenizer_config.json
Gemma 7B
Gemma 7B is a larger Gemma model with 7B parameters and open weights. The model is more powerful for a variety of text generation tasks, including question answering, summarization, and reasoning. Gemma 7B is only supported on Web.
The Gemma 7B model comes in one variant:
- gemma-1.1-7b-it-gpu-int8: Gemma 7B 8-bit model with GPU compatibility.
If you download Gemma 7B from Hugging Face, you must convert the model to a MediaPipe-friendly format. The LLM Inference API requires the following files to be downloaded and converted:
model-00001-of-00004.safetensors
model-00002-of-00004.safetensors
model-00003-of-00004.safetensors
model-00004-of-00004.safetensors
tokenizer.json
tokenizer_config.json
Falcon 1B
Falcon-1B is a 1 billion parameter causal decoder-only model trained on 350B tokens of RefinedWeb.
The LLM Inference API requires the following files to be downloaded and stored locally:
tokenizer.json
tokenizer_config.json
pytorch_model.bin
After downloading the Falcon model files, the model is ready to be converted to the MediaPipe format. Follow the steps in Convert model to MediaPipe format.
StableLM 3B
StableLM-3B is a 3 billion parameter decoder-only language model pre-trained on 1 trillion tokens of diverse English and code datasets for 4 epochs.
The LLM Inference API requires the following files to be downloaded and stored locally:
tokenizer.json
tokenizer_config.json
model.safetensors
After downloading the StableLM model files, the model is ready to be converted to the MediaPipe format. Follow the steps in Convert model to MediaPipe format.
Phi-2
Phi-2 is a 2.7 billion parameter Transformer model. It was trained using various NLP synthetic texts and filtered websites. The model is best suited for prompts using the Question-Answer, chat, and code format.
The LLM Inference API requires the following files to be downloaded and stored locally:
tokenizer.json
tokenizer_config.json
model-00001-of-00002.safetensors
model-00002-of-00002.safetensors
After downloading the Phi-2 model files, the model is ready to be converted to the MediaPipe format. Follow the steps in Convert model to MediaPipe format.
AI Edge Exported Models
AI Edge is a Google offering that lets you convert user-mapped models into multi-signature TensorFlow Lite models. For more details on mapping and exporting models, visit the AI Edge Torch GitHub page.
After exporting the model into the TFLite format, the model is ready to be converted to the MediaPipe format. For more, see Convert model to MediaPipe format.
Convert model to MediaPipe format
Native model conversion
If you are using an external LLM (Phi-2, Falcon, or StableLM) or a non-Kaggle version of Gemma, use our conversion scripts to format the model to be compatible with MediaPipe.
The model conversion process requires the MediaPipe PyPI package. The conversion
script is available in all MediaPipe packages after 0.10.11
.
Install and import the dependencies with the following:
$ python3 -m pip install mediapipe
Use the genai.converter
library to convert the model:
import mediapipe as mp
from mediapipe.tasks.python.genai import converter
config = converter.ConversionConfig(
input_ckpt=INPUT_CKPT,
ckpt_format=CKPT_FORMAT,
model_type=MODEL_TYPE,
backend=BACKEND,
output_dir=OUTPUT_DIR,
combine_file_only=False,
vocab_model_file=VOCAB_MODEL_FILE,
output_tflite_file=OUTPUT_TFLITE_FILE,
)
converter.convert_checkpoint(config)
To convert the LoRA model, the ConversionConfig
should specify the base model
options as well as additional LoRA options. Notice that since the API only
supports LoRA inference with GPU, the backend must be set to 'gpu'
.
import mediapipe as mp
from mediapipe.tasks.python.genai import converter
config = converter.ConversionConfig(
# Other params related to base model
...
# Must use gpu backend for LoRA conversion
backend='gpu',
# LoRA related params
lora_ckpt=LORA_CKPT,
lora_rank=LORA_RANK,
lora_output_tflite_file=LORA_OUTPUT_TFLITE_FILE,
)
converter.convert_checkpoint(config)
The converter will output two TFLite flatbuffer files, one for the base model and the other for the LoRA model.
Parameter | Description | Accepted Values |
---|---|---|
input_ckpt |
The path to the model.safetensors or pytorch.bin file. Note that sometimes the model safetensors format are sharded into multiple files, e.g. model-00001-of-00003.safetensors , model-00001-of-00003.safetensors . You can specify a file pattern, like model*.safetensors . |
PATH |
ckpt_format |
The model file format. | {"safetensors", "pytorch"} |
model_type |
The LLM being converted. | {"PHI_2", "FALCON_RW_1B", "STABLELM_4E1T_3B", "GEMMA_2B"} |
backend |
The processor (delegate) used to run the model. | {"cpu", "gpu"} |
output_dir |
The path to the output directory that hosts the per-layer weight files. | PATH |
output_tflite_file |
The path to the output file. For example, "model_cpu.bin" or "model_gpu.bin". This file is only compatible with the LLM Inference API, and cannot be used as a general `tflite` file. | PATH |
vocab_model_file |
The path to the directory that stores the tokenizer.json and
tokenizer_config.json files. For Gemma, point to the single tokenizer.model file. |
PATH |
lora_ckpt |
The path to the LoRA ckpt of safetensors file that stores the LoRA adapter weight. | PATH |
lora_rank |
An integer representing the rank of LoRA ckpt. Required in order to convert the lora weights. If not provided, then the converter assumes there are no LoRA weights. Note: Only the GPU backend supports LoRA. | Integer |
lora_output_tflite_file |
Output tflite filename for the LoRA weights. | PATH |
AI Edge model conversion
If you are using an LLM mapped to a TFLite model through AI Edge, use our bundling script to create a Task Bundle. The bundling process packs the mapped model with additional metadata (e.g., Tokenizer Parameters) needed to run end-to-end inference.
The model bundling process requires the MediaPipe PyPI package. The conversion
script is available in all MediaPipe packages after 0.10.14
.
Install and import the dependencies with the following:
$ python3 -m pip install mediapipe
Use the genai.bundler
library to bundle the model:
import mediapipe as mp
from mediapipe.tasks.python.genai import bundler
config = bundler.BundleConfig(
tflite_model=TFLITE_MODEL,
tokenizer_model=TOKENIZER_MODEL,
start_token=START_TOKEN,
stop_tokens=STOP_TOKENS,
output_filename=OUTPUT_FILENAME,
enable_bytes_to_unicode_mapping=ENABLE_BYTES_TO_UNICODE_MAPPING,
)
bundler.create_bundle(config)
Parameter | Description | Accepted Values |
---|---|---|
tflite_model |
The path to the AI Edge exported TFLite model. | PATH |
tokenizer_model |
The path to the SentencePiece tokenizer model. | PATH |
start_token |
Model specific start token. The start token must be present in the provided tokenizer model. | STRING |
stop_tokens |
Model specific stop tokens. The stop tokens must be present in the provided tokenizer model. | LIST[STRING] |
output_filename |
The name of the output task bundle file. | PATH |
LoRA customization
Mediapipe LLM inference API can be configured to support Low-Rank Adaptation (LoRA) for large language models. Utilizing fine-tuned LoRA models, developers can customize the behavior of LLMs through a cost-effective training process.LoRA support of the LLM Inference API works for Gemma-2B and Phi-2 models for the GPU backend, with LoRA weights applicable to attention layers only. This initial implementation serves as an experimental API for future developments with plans to support more models and various types of layers in the coming updates.
Prepare LoRA models
Follow the instructions on HuggingFace to train a fine tuned LoRA model on your own dataset with supported model types, Gemma-2B or Phi-2. Gemma-2B and Phi-2 models are both available on HuggingFace in the safetensors format. Since LLM Inference API only supports LoRA on attention layers, only specify attention layers while creating the LoraConfig
as following:
# For Gemma-2B
from peft import LoraConfig
config = LoraConfig(
r=LORA_RANK,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
)
# For Phi-2
config = LoraConfig(
r=LORA_RANK,
target_modules=["q_proj", "v_proj", "k_proj", "dense"],
)
For testing, there are publicly accessible fine-tuned LoRA models which fit LLM Inference API available on HuggingFace. For example, monsterapi/gemma-2b-lora-maths-orca-200k for Gemma-2B and lole25/phi-2-sft-ultrachat-lora for Phi-2.
After training on the prepared dataset and saving the model, you obtain an adapter_model.safetensors
file containing the fine-tuned LoRA model weights. The safetensors file is the LoRA checkpoint used in the model conversion.
As the next step, you need convert the model weights into a TensorFlow Lite Flatbuffer using the MediaPipe Python Package. The ConversionConfig
should specify the base model options as well as additional LoRA options. Notice that since the API only supports LoRA inference with GPU, the backend must be set to 'gpu'
.
import mediapipe as mp
from mediapipe.tasks.python.genai import converter
config = converter.ConversionConfig(
# Other params related to base model
...
# Must use gpu backend for LoRA conversion
backend='gpu',
# LoRA related params
lora_ckpt=LORA_CKPT,
lora_rank=LORA_RANK,
lora_output_tflite_file=LORA_OUTPUT_TFLITE_FILE,
)
converter.convert_checkpoint(config)
The converter will output two TFLite flatbuffer files, one for the base model and the other for the LoRA model.
LoRA model inference
The Web, Android and iOS LLM Inference API are updated to support LoRA model inference. Web supports dynamic LoRA, which can switch different LoRA models during runtime. Android and iOS support static LoRA, which uses the same LoRA weights during the lifetime of the task.
Android supports static LoRA during initialization. To load a LoRA model, users specify the LoRA model path as well as the base LLM.// Set the configuration options for the LLM Inference task
val options = LlmInferenceOptions.builder()
.setModelPath('<path to base model>')
.setMaxTokens(1000)
.setTopK(40)
.setTemperature(0.8)
.setRandomSeed(101)
.setLoraPath('<path to LoRA model>')
.build()
// Create an instance of the LLM Inference task
llmInference = LlmInference.createFromOptions(context, options)
To run LLM inference with LoRA, use the same generateResponse()
or generateResponseAsync()
methods as the base model.